» Articles » PMID: 18974354

Glia Are Essential for Sensory Organ Function in C. Elegans

Overview
Journal Science
Specialty Science
Date 2008 Nov 1
PMID 18974354
Citations 105
Authors
Affiliations
Soon will be listed here.
Abstract

Sensory organs are composed of neurons, which convert environmental stimuli to electrical signals, and glia-like cells, whose functions are not well understood. To decipher glial roles in sensory organs, we ablated the sheath glial cell of the major sensory organ of Caenorhabditis elegans. We found that glia-ablated animals exhibit profound sensory deficits and that glia provide activities that affect neuronal morphology, behavior generation, and neuronal uptake of lipophilic dyes. To understand the molecular bases of these activities, we identified 298 genes whose messenger RNAs are glia-enriched. One gene, fig-1, encodes a labile protein with conserved thrombospondin TSP1 domains. FIG-1 protein functions extracellularly, is essential for neuronal dye uptake, and also affects behavior. Our results suggest that glia are required for multiple aspects of sensory organ function.

Citing Articles

Glia detect and transiently protect against dendrite substructure disruption in C. elegans.

Varandas K, Hodges B, Lubeck L, Farinas A, Liang Y, Lu Y Nat Commun. 2025; 16(1):79.

PMID: 39747235 PMC: 11696001. DOI: 10.1038/s41467-024-55674-0.


The AFD-expressed SRTX-1 GPCR does not contribute to AFD thermosensory functions.

Chen L, Harris N, Sengupta P MicroPubl Biol. 2024; 2024.

PMID: 39611104 PMC: 11603155. DOI: 10.17912/micropub.biology.001382.


Molecular profiling of invertebrate glia.

Purice M, Lago-Baldaia I, Fernandes V, Singhvi A Glia. 2024; 73(3):632-656.

PMID: 39415317 PMC: 11784859. DOI: 10.1002/glia.24623.


Glia in Invertebrate Models: Insights from Caenorhabditis elegans.

Purice M, Severs L, Singhvi A Adv Neurobiol. 2024; 39:19-49.

PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2.


Evolution of Astrocyte-Neuron Interactions Across Species.

Ciani C, Ayub M, Falcone C Adv Neurobiol. 2024; 39:1-17.

PMID: 39190069 DOI: 10.1007/978-3-031-64839-7_1.


References
1.
Haydon P . GLIA: listening and talking to the synapse. Nat Rev Neurosci. 2001; 2(3):185-93. DOI: 10.1038/35058528. View

2.
Yoshimura S, Murray J, Lu Y, Waterston R, Shaham S . mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development. 2008; 135(13):2263-75. DOI: 10.1242/dev.019547. View

3.
Trachtenberg J, Chen B, Knott G, Feng G, Sanes J, Welker E . Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002; 420(6917):788-94. DOI: 10.1038/nature01273. View

4.
Murai K, Nguyen L, Irie F, Yamaguchi Y, Pasquale E . Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2002; 6(2):153-60. DOI: 10.1038/nn994. View

5.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View