» Articles » PMID: 18971341

Crystal Structure and Activity of Bacillus Subtilis YoaJ (EXLX1), a Bacterial Expansin That Promotes Root Colonization

Overview
Specialty Science
Date 2008 Oct 31
PMID 18971341
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.

Citing Articles

SANS investigation of fungal loosenins reveals substrate-dependent impacts of protein action on the inter-microfibril arrangement of cellulosic substrates.

Dahiya D, Peter-Szabo Z, Senanayake M, Pingali S, Leite W, Byrnes J Biotechnol Biofuels Bioprod. 2025; 18(1):27.

PMID: 40022179 PMC: 11869483. DOI: 10.1186/s13068-025-02618-5.


Widespread horizontal gene transfer between plants and bacteria.

Haimlich S, Fridman Y, Khandal H, Savaldi-Goldstein S, Levy A ISME Commun. 2024; 4(1):ycae073.

PMID: 38808121 PMC: 11131428. DOI: 10.1093/ismeco/ycae073.


Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils.

Haddad Momeni M, Zitting A, Jaamuru V, Turunen R, Penttila P, Buchko G Biotechnol Biofuels Bioprod. 2024; 17(1):56.

PMID: 38654330 PMC: 11040781. DOI: 10.1186/s13068-024-02500-w.


A novel decrystallizing protein CxEXL22 from Arthrobotrys sp. CX1 capable of synergistically hydrolyzing cellulose with cellulases.

Li R, Sun Y, Zhou Y, Gai J, You L, Yang F Bioresour Bioprocess. 2024; 8(1):90.

PMID: 38650251 PMC: 10992334. DOI: 10.1186/s40643-021-00446-7.


Bacterial surface-exposed lipoproteins and sortase-mediated anchored cell surface proteins in plant infection.

de Sandozequi A, Martinez-Anaya C Microbiologyopen. 2023; 12(5):e1382.

PMID: 37877658 PMC: 10501053. DOI: 10.1002/mbo3.1382.


References
1.
van Straaten K, Dijkstra B, Vollmer W, Thunnissen A . Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol. 2005; 352(5):1068-80. DOI: 10.1016/j.jmb.2005.07.067. View

2.
Cosgrove D . Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005; 6(11):850-61. DOI: 10.1038/nrm1746. View

3.
Sampedro J, Cosgrove D . The expansin superfamily. Genome Biol. 2005; 6(12):242. PMC: 1414085. DOI: 10.1186/gb-2005-6-12-242. View

4.
Yennawar N, Li L, Dudzinski D, Tabuchi A, Cosgrove D . Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A. 2006; 103(40):14664-71. PMC: 1595409. DOI: 10.1073/pnas.0605979103. View

5.
Ochiai A, Itoh T, Kawamata A, Hashimoto W, Murata K . Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization. Appl Environ Microbiol. 2007; 73(12):3803-13. PMC: 1932723. DOI: 10.1128/AEM.00147-07. View