Two-dimensional Fluid with Competing Interactions Exhibiting Microphase Separation: Theory for Bulk and Interfacial Properties
Overview
Physiology
Public Health
Authors
Affiliations
Colloidal particles that are confined to an interface such as the air-water interface are an example of a two-dimensional fluid. Such dispersions have been observed to spontaneously form cluster and stripe morphologies in certain systems with isotropic pair potentials between the particles, due to the fact that the pair interaction between the colloids has competing attraction and repulsion over different length scales. Here we present a simple density functional theory for a model of such a two-dimensional fluid. The theory predicts a bulk phase diagram exhibiting cluster, stripe, and bubble modulated phases, in addition to homogeneous fluid phases. Comparing with simulation results for this model from the literature, we find that the theory is qualitatively reliable. The model allows for a detailed investigation of the structure of the fluid and we are able to obtain simple approximate expressions for the static structure factor and for the length scale characterizing the modulations in the microphase separated phases. We also investigate the behavior of the system under confinement between two parallel hard walls. We find that the confined fluid phase behavior can be rather complex.
Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes.
De Virgiliis A, Meyra A, Ciach A Curr Issues Mol Biol. 2024; 46(10):10829-10845.
PMID: 39451523 PMC: 11506602. DOI: 10.3390/cimb46100643.
Litniewski M, Gozdz W, Ciach A Molecules. 2024; 29(13).
PMID: 38999122 PMC: 11242970. DOI: 10.3390/molecules29133170.
Lattice Model Results for Pattern Formation in a Mixture with Competing Interactions.
De Virgiliis A, Meyra A, Ciach A Molecules. 2024; 29(7).
PMID: 38611792 PMC: 11013164. DOI: 10.3390/molecules29071512.
Complex-tensor theory of simple smectics.
Paget J, Mazza M, Archer A, Shendruk T Nat Commun. 2023; 14(1):1048.
PMID: 36828813 PMC: 9958025. DOI: 10.1038/s41467-023-36506-z.
Microphase separation of living cells.
Carrere A, dAlessandro J, Cochet-Escartin O, Hesnard J, Ghazi N, Riviere C Nat Commun. 2023; 14(1):796.
PMID: 36781863 PMC: 9925768. DOI: 10.1038/s41467-023-36395-2.