» Articles » PMID: 18849996

A Quantitative Model of Transcription Factor-activated Gene Expression

Overview
Date 2008 Oct 14
PMID 18849996
Citations 85
Authors
Affiliations
Soon will be listed here.
Abstract

A challenge facing biology is to develop quantitative, predictive models of gene regulation. Eukaryotic promoters contain transcription factor binding sites of differing affinity and accessibility, but we understand little about how these variables combine to generate a fine-tuned, quantitative transcriptional response. Here we used the PHO5 promoter in budding yeast to quantify the relationship between transcription factor input and gene expression output, termed the gene-regulation function (GRF). A model that captures variable interactions between transcription factors, nucleosomes and the promoter faithfully reproduced the observed quantitative changes in the GRF that occur upon altering the affinity of transcription factor binding sites, and implicates nucleosome-modulated accessibility of transcription factor binding sites in increasing the diversity of gene expression profiles. This work establishes a quantitative framework that can be applied to predict GRFs of other eukaryotic genes.

Citing Articles

Thermodynamic principles link transcription factor affinities to single-molecule chromatin states in cells.

Schaepe J, Fries T, Doughty B, Crocker O, Hinks M, Marklund E bioRxiv. 2025; .

PMID: 39975040 PMC: 11838358. DOI: 10.1101/2025.01.27.635162.


Single-molecule states link transcription factor binding to gene expression.

Doughty B, Hinks M, Schaepe J, Marinov G, Thurm A, Rios-Martinez C Nature. 2024; 636(8043):745-754.

PMID: 39567683 DOI: 10.1038/s41586-024-08219-w.


A DNA base-specific sequence interposed between CRX and NRL contributes to RHODOPSIN expression.

Maritato R, Medugno A, DAndretta E, De Riso G, Lupo M, Botta S Sci Rep. 2024; 14(1):26313.

PMID: 39487168 PMC: 11530525. DOI: 10.1038/s41598-024-76664-8.


MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans.

Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J J Cell Biol. 2024; 224(1).

PMID: 39400293 PMC: 11473600. DOI: 10.1083/jcb.202403198.


Live-cell analysis of IMPDH protein levels during yeast colony growth provides insights into the regulation of GTP synthesis.

Shand E, Sweeney K, Sundling K, McClean M, Brow D mBio. 2024; 15(8):e0102124.

PMID: 38940616 PMC: 11323793. DOI: 10.1128/mbio.01021-24.


References
1.
Urlinger S, Baron U, Thellmann M, Hasan M, Bujard H, Hillen W . Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A. 2000; 97(14):7963-8. PMC: 16653. DOI: 10.1073/pnas.130192197. View

2.
Rosenfeld N, Young J, Alon U, Swain P, Elowitz M . Gene regulation at the single-cell level. Science. 2005; 307(5717):1962-5. DOI: 10.1126/science.1106914. View

3.
Steger D, Haswell E, Miller A, Wente S, OShea E . Regulation of chromatin remodeling by inositol polyphosphates. Science. 2002; 299(5603):114-6. PMC: 1458531. DOI: 10.1126/science.1078062. View

4.
Bintu L, Buchler N, Garcia H, Gerland U, Hwa T, Kondev J . Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev. 2005; 15(2):125-35. PMC: 3462814. DOI: 10.1016/j.gde.2005.02.006. View

5.
Becskei A, Kaufmann B, van Oudenaarden A . Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat Genet. 2005; 37(9):937-44. DOI: 10.1038/ng1616. View