Qin C, Graf L, Striska K, Janetzky M, Geist N, Specht R
Nat Commun. 2024; 15(1):6002.
PMID: 39019872
PMC: 11255334.
DOI: 10.1038/s41467-024-49952-0.
Heard S, Winter J
Nat Prod Rep. 2024; 41(7):1180-1205.
PMID: 38488017
PMC: 11253843.
DOI: 10.1039/d3np00064h.
Patel K, MacDonald M, Ahmed S, Singh J, Gulick A
Nat Prod Rep. 2023; 40(9):1550-1582.
PMID: 37114973
PMC: 10510592.
DOI: 10.1039/d3np00003f.
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y
Microb Cell Fact. 2022; 21(1):196.
PMID: 36123650
PMC: 9484153.
DOI: 10.1186/s12934-022-01918-x.
Nikolopoulos N, Matos R, Courtin P, Ayala I, Akherraz H, Simorre J
Sci Rep. 2022; 12(1):13133.
PMID: 35907949
PMC: 9338922.
DOI: 10.1038/s41598-022-17434-2.
Structural and functional analysis of the D-alanyl carrier protein ligase DltA from Staphylococcus aureus Mu50.
Lee I, Song C, Yang S, Jeon H, Park J, Yoon H
Acta Crystallogr D Struct Biol. 2022; 78(Pt 4):424-434.
PMID: 35362466
PMC: 8972799.
DOI: 10.1107/S2059798322000547.
Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations.
Qiao Y, Leng C, Liu G, Zhang Y, Lv X, Chen H
J Microbiol. 2019; 57(9):769-780.
PMID: 31201725
DOI: 10.1007/s12275-019-8604-y.
Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis.
Cieslak J, Miyanaga A, Takaishi M, Kudo F, Eguchi T
Acta Crystallogr F Struct Biol Commun. 2019; 75(Pt 4):299-306.
PMID: 30950831
PMC: 6450520.
DOI: 10.1107/S2053230X19002863.
Context-dependent activity of A domains in the tyrocidine synthetase.
Degen A, Mayerthaler F, Mootz H, Di Ventura B
Sci Rep. 2019; 9(1):5119.
PMID: 30914767
PMC: 6435693.
DOI: 10.1038/s41598-019-41492-8.
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products.
Kudo F, Miyanaga A, Eguchi T
J Ind Microbiol Biotechnol. 2018; 46(3-4):515-536.
PMID: 30291534
DOI: 10.1007/s10295-018-2084-7.
A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation.
Wood B, Santa Maria Jr J, Matano L, Vickery C, Walker S
J Biol Chem. 2018; 293(46):17985-17996.
PMID: 30237166
PMC: 6240853.
DOI: 10.1074/jbc.RA118.004561.
Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations.
Qiao Y, Liu G, Leng C, Zhang Y, Lv X, Chen H
Sci Rep. 2018; 8(1):12441.
PMID: 30127376
PMC: 6102215.
DOI: 10.1038/s41598-018-30272-5.
Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes.
Gulick A, Aldrich C
Nat Prod Rep. 2018; 35(11):1156-1184.
PMID: 30046790
PMC: 6235721.
DOI: 10.1039/c8np00044a.
Crystal structure of the thioesterification conformation of -succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode.
Chen Y, Li T, Lin X, Li X, Li X, Guo Z
J Biol Chem. 2017; 292(29):12296-12310.
PMID: 28559280
PMC: 5519377.
DOI: 10.1074/jbc.M117.790410.
Alanylated lipoteichoic acid primer in Bacillus subtilis.
Luo Y
F1000Res. 2016; 5:155.
PMID: 27134729
PMC: 4837988.
DOI: 10.12688/f1000research.8007.2.
Structural Biology of Nonribosomal Peptide Synthetases.
Miller B, Gulick A
Methods Mol Biol. 2016; 1401:3-29.
PMID: 26831698
PMC: 4760355.
DOI: 10.1007/978-1-4939-3375-4_1.
Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase.
Chen Y, Sun Y, Song H, Guo Z
J Biol Chem. 2015; 290(39):23971-83.
PMID: 26276389
PMC: 4583020.
DOI: 10.1074/jbc.M115.676304.
Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus.
Du L, Luo Y
F1000Res. 2014; 3:106.
PMID: 25285205
PMC: 4176424.
DOI: 10.12688/f1000research.4097.1.
The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.
Miyanaga A, Cieslak J, Shinohara Y, Kudo F, Eguchi T
J Biol Chem. 2014; 289(45):31448-57.
PMID: 25246523
PMC: 4223343.
DOI: 10.1074/jbc.M114.602326.
Antimicrobial peptide resistance of Vibrio cholerae results from an LPS modification pathway related to nonribosomal peptide synthetases.
Henderson J, Fage C, Cannon J, Brodbelt J, Keatinge-Clay A, Trent M
ACS Chem Biol. 2014; 9(10):2382-92.
PMID: 25068415
PMC: 4520716.
DOI: 10.1021/cb500438x.