» Articles » PMID: 18841862

An Energy Transfer Method for 4D Monte Carlo Dose Calculation

Overview
Journal Med Phys
Specialty Biophysics
Date 2008 Oct 10
PMID 18841862
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms.

Citing Articles

An energy-conserving dose summation method for dose accumulation in radiotherapy.

Zhong H Med Phys. 2024; 52(2):1305-1310.

PMID: 39546728 PMC: 11788027. DOI: 10.1002/mp.17514.


Monte Carlo dose calculation for photon and electron radiotherapy on dynamically deforming anatomy.

Zobrist B, Bertholet J, Frei D, Volken W, Amstutz F, Stampanoni M Med Phys. 2024; 52(2):1281-1292.

PMID: 39436614 PMC: 11788255. DOI: 10.1002/mp.17472.


A multi-institutional comparison of retrospective deformable dose accumulation for online adaptive magnetic resonance-guided radiotherapy.

Murr M, Bernchou U, Bubula-Rehm E, Ruschin M, Sadeghi P, Voet P Phys Imaging Radiat Oncol. 2024; 30:100588.

PMID: 38883145 PMC: 11176923. DOI: 10.1016/j.phro.2024.100588.


Radiation therapy margin reduction for patients with localized prostate cancer: A prospective study of the dosimetric impact and quality of life.

Kumarasiri A, Chetty I, Devpura S, Pradhan D, Aref I, Elshaikh M J Appl Clin Med Phys. 2023; 25(3):e14198.

PMID: 37952248 PMC: 10930006. DOI: 10.1002/acm2.14198.


Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation.

McDonald B, Zachiu C, Christodouleas J, Naser M, Ruschin M, Sonke J Front Oncol. 2023; 12:1086258.

PMID: 36776378 PMC: 9909539. DOI: 10.3389/fonc.2022.1086258.


References
1.
Siebers J, Keall P, Libby B, Mohan R . Comparison of EGS4 and MCNP4b Monte Carlo codes for generation of photon phase space distributions for a Varian 2100C. Phys Med Biol. 2000; 44(12):3009-26. DOI: 10.1088/0031-9155/44/12/311. View

2.
Rosu M, Chetty I, Balter J, Kessler M, McShan D, Ten Haken R . Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications. Med Phys. 2005; 32(8):2487-95. DOI: 10.1118/1.1949749. View

3.
Hartmann Siantar C, Walling R, Daly T, Faddegon B, Albright N, Bergstrom P . Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys. 2001; 28(7):1322-37. DOI: 10.1118/1.1381551. View

4.
Keall P, Siebers J, Libby B, Mohan R . Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set. Med Phys. 2003; 30(4):574-82. DOI: 10.1118/1.1561623. View

5.
Schaly B, Kempe J, Bauman G, Battista J, Van Dyk J . Tracking the dose distribution in radiation therapy by accounting for variable anatomy. Phys Med Biol. 2004; 49(5):791-805. DOI: 10.1088/0031-9155/49/5/010. View