» Articles » PMID: 18831587

Selective Detection of Protein Crystals by Second Harmonic Microscopy

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2008 Oct 4
PMID 18831587
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

The unique symmetry properties of second harmonic generation (SHG) microscopy enabled sensitive and selective imaging of protein microcrystals with negligible contributions from solvated proteins or amorphous protein aggregates. In studies of microcrystallites of green fluorescent protein (GFP) prepared in 500 pL droplets, the SHG intensities rivaled those of fluorescence, but with superb selectivity for crystalline regions. GFP in amorphous aggregates and in solution produced substantial background fluorescence, but no detectable SHG. The ratio of the forward-to-backward detected SHG provides a measure of the particle size, suggesting detection limits down to crystallites 100 nm in diameter under low magnification (10x). In addition to being sensitive and highly selective, second-order nonlinear optical imaging of chiral crystals (SONICC) is directly compatibility with virtually all common protein crystallization platforms.

Citing Articles

A gene-encoded bioprotein second harmonic generation (SHG) probe from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin for live cell imaging.

Deng X, Liu H, Chen H, Yang Z, Wu Y, He L Eur Biophys J. 2025; 54(1-2):21-32.

PMID: 39812816 DOI: 10.1007/s00249-024-01728-6.


Non-invasive nanoscale imaging of protein micro- and nanocrystals for screening crystallization conditions.

Khakurel K, Hosomi K, Inami W, Yoshimasa K J Appl Crystallogr. 2024; 57(Pt 6):1907-1912.

PMID: 39628883 PMC: 11611282. DOI: 10.1107/S1600576724010124.


Reaching the potential of electron diffraction.

Acehan D, Spoth K, Budziszewski G, Snell M, Campomizzi C, Lynch M Cell Rep Phys Sci. 2024; 5(6).

PMID: 39055735 PMC: 11271257. DOI: 10.1016/j.xcrp.2024.102007.


A streamlined approach to structure elucidation using in cellulo crystallized recombinant proteins, InCellCryst.

Schonherr R, Boger J, Lahey-Rudolph J, Harms M, Kaiser J, Nachtschatt S Nat Commun. 2024; 15(1):1709.

PMID: 38402242 PMC: 10894269. DOI: 10.1038/s41467-024-45985-7.


A robust approach for MicroED sample preparation of lipidic cubic phase embedded membrane protein crystals.

Martynowycz M, Shiriaeva A, Clabbers M, Nicolas W, Weaver S, Hattne J Nat Commun. 2023; 14(1):1086.

PMID: 36841804 PMC: 9968316. DOI: 10.1038/s41467-023-36733-4.


References
1.
Moad A, Moad C, Perry J, Wampler R, Goeken G, Begue N . NLOPredict: visualization and data analysis software for nonlinear optics. J Comput Chem. 2007; 28(12):1996-2002. DOI: 10.1002/jcc.20706. View

2.
Groves M, Muller I, Kreplin X, Muller-Dieckmann J . A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr. 2007; 63(Pt 4):526-35. DOI: 10.1107/S0907444906056137. View

3.
Bodenstaff E, Hoedemaeker F, Kuil M, de Vrind H, Abrahams J . The prospects of protein nanocrystallography. Acta Crystallogr D Biol Crystallogr. 2002; 58(Pt 11):1901-6. DOI: 10.1107/s0907444902016608. View

4.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H . The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42. PMC: 102472. DOI: 10.1093/nar/28.1.235. View

5.
Zheng B, Roach L, Ismagilov R . Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc. 2005; 125(37):11170-1. DOI: 10.1021/ja037166v. View