» Articles » PMID: 18820082

Root-secreted Malic Acid Recruits Beneficial Soil Bacteria

Overview
Journal Plant Physiol
Specialty Physiology
Date 2008 Sep 30
PMID 18820082
Citations 284
Authors
Affiliations
Soon will be listed here.
Abstract

Beneficial soil bacteria confer immunity against a wide range of foliar diseases by activating plant defenses, thereby reducing a plant's susceptibility to pathogen attack. Although bacterial signals have been identified that activate these plant defenses, plant metabolites that elicit rhizobacterial responses have not been demonstrated. Here, we provide biochemical evidence that the tricarboxylic acid cycle intermediate L-malic acid (MA) secreted from roots of Arabidopsis (Arabidopsis thaliana) selectively signals and recruits the beneficial rhizobacterium Bacillus subtilis FB17 in a dose-dependent manner. Root secretions of L-MA are induced by the foliar pathogen Pseudomonas syringae pv tomato (Pst DC3000) and elevated levels of L-MA promote binding and biofilm formation of FB17 on Arabidopsis roots. The demonstration that roots selectively secrete L-MA and effectively signal beneficial rhizobacteria establishes a regulatory role of root metabolites in recruitment of beneficial microbes, as well as underscores the breadth and sophistication of plant-microbial interactions.

Citing Articles

Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture.

Malik D, Kumar S, Sindhu S 3 Biotech. 2025; 15(4):82.

PMID: 40071128 PMC: 11891127. DOI: 10.1007/s13205-025-04243-3.


Transgenic Maize of Shapes Microbiome on Adaxial and Abaxial Surface of Leaves to Promote Disease Resistance.

Chao S, Zhang Y, Hu Y, Chen Y, Li P, Sun Y Microorganisms. 2025; 13(2).

PMID: 40005729 PMC: 11858687. DOI: 10.3390/microorganisms13020362.


Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus.

Wu J, Liu S, Zhang H, Chen S, Si J, Liu L Nat Commun. 2025; 16(1):1461.

PMID: 39920117 PMC: 11805958. DOI: 10.1038/s41467-025-56226-w.


An atlas of metabolites driving chemotaxis in prokaryotes.

Brunet M, Amin S, Bodachivskyi I, Kuzhiumparambil U, Seymour J, Raina J Nat Commun. 2025; 16(1):1242.

PMID: 39890791 PMC: 11785958. DOI: 10.1038/s41467-025-56410-y.


Genomic and metabolic characterization of isolated from domestic and wild animals.

Magossi G, Gzyl K, Holman D, Nagaraja T, Amachawadi R, Amat S Appl Environ Microbiol. 2025; 91(1):e0172524.

PMID: 39745423 PMC: 11784230. DOI: 10.1128/aem.01725-24.


References
1.
De Moraes C, Mescher M, Tumlinson J . Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 2001; 410(6828):577-80. DOI: 10.1038/35069058. View

2.
Manson M, Tedesco P, Berg H, Harold F, van der Drift C . A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A. 1977; 74(7):3060-4. PMC: 431412. DOI: 10.1073/pnas.74.7.3060. View

3.
Kobayashi Y, Hoekenga O, Itoh H, Nakashima M, Saito S, Shaff J . Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol. 2007; 145(3):843-52. PMC: 2048794. DOI: 10.1104/pp.107.102335. View

4.
Gordillo F, Chavez F, Jerez C . Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol. 2007; 60(2):322-8. DOI: 10.1111/j.1574-6941.2007.00293.x. View

5.
Branda S, Chu F, Kearns D, Losick R, Kolter R . A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 2006; 59(4):1229-38. DOI: 10.1111/j.1365-2958.2005.05020.x. View