Gao D, Yuan X
J Math Biol. 2024; 89(2):16.
PMID: 38890206
PMC: 11189357.
DOI: 10.1007/s00285-024-02109-5.
Gao D, Cao L
J Math Biol. 2024; 88(2):22.
PMID: 38294559
DOI: 10.1007/s00285-023-02044-x.
Wu S, Henry J, Citron D, Mbabazi Ssebuliba D, Nakakawa Nsumba J, Sanchez C H
PLoS Comput Biol. 2023; 19(6):e1010684.
PMID: 37307282
PMC: 10289676.
DOI: 10.1371/journal.pcbi.1010684.
Saucedo O, Tien J
Infect Dis Model. 2022; 7(4):742-760.
PMID: 36439402
PMC: 9672958.
DOI: 10.1016/j.idm.2022.10.006.
Silal S, Little F, Barnes K, White L
Health Syst (Basingstoke). 2022; 5(3):178-191.
PMID: 36061953
PMC: 7613485.
DOI: 10.1057/hs.2015.2.
Use of the Hayami diffusive wave equation to model the relationship infected-recoveries-deaths of Covid-19 pandemic.
Moussa R, Majdalani S
Epidemiol Infect. 2021; 149:e138.
PMID: 33910670
PMC: 8207560.
DOI: 10.1017/S0950268821001011.
A patchy model for the transmission dynamics of tuberculosis in sub-Saharan Africa.
Moualeu D, Bowong S, Tsanou B, Temgoua A
Int J Dyn Control. 2020; 6(1):122-139.
PMID: 32288982
PMC: 7133616.
DOI: 10.1007/s40435-017-0310-1.
Habitat fragmentation promotes malaria persistence.
Gao D, van den Driessche P, Cosner C
J Math Biol. 2019; 79(6-7):2255-2280.
PMID: 31520106
DOI: 10.1007/s00285-019-01428-2.
Mathematical modeling of climate change and malaria transmission dynamics: a historical review.
Eikenberry S, Gumel A
J Math Biol. 2018; 77(4):857-933.
PMID: 29691632
DOI: 10.1007/s00285-018-1229-7.
Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios.
Moukam Kakmeni F, Guimapi R, Ndjomatchoua F, Pedro S, Mutunga J, Tonnang H
Int J Health Geogr. 2018; 17(1):2.
PMID: 29338736
PMC: 5771136.
DOI: 10.1186/s12942-018-0122-3.
Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
Phaijoo G, Gurung D
Comput Math Methods Med. 2018; 2017:1747134.
PMID: 29312458
PMC: 5651158.
DOI: 10.1155/2017/1747134.
Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities.
Masui H, Kakitani I, Ujiyama S, Hashidate K, Shiono M, Kudo K
Theor Biol Med Model. 2016; 13:12.
PMID: 27072122
PMC: 4828873.
DOI: 10.1186/s12976-016-0039-0.
Hitting a Moving Target: A Model for Malaria Elimination in the Presence of Population Movement.
Silal S, Little F, Barnes K, White L
PLoS One. 2015; 10(12):e0144990.
PMID: 26689547
PMC: 4686217.
DOI: 10.1371/journal.pone.0144990.
Predicting the impact of border control on malaria transmission: a simulated focal screen and treat campaign.
Silal S, Little F, Barnes K, White L
Malar J. 2015; 14:268.
PMID: 26164675
PMC: 4499227.
DOI: 10.1186/s12936-015-0776-2.
Spatial heterogeneity, host movement and mosquito-borne disease transmission.
Acevedo M, Prosper O, Lopiano K, Ruktanonchai N, Caughlin T, Martcheva M
PLoS One. 2015; 10(6):e0127552.
PMID: 26030769
PMC: 4452543.
DOI: 10.1371/journal.pone.0127552.
A PERIODIC ROSS-MACDONALD MODEL IN A PATCHY ENVIRONMENT.
Gao D, Lou Y, Ruan S
Discrete Continuous Dyn Syst Ser B. 2014; 19(10):3133-3145.
PMID: 25473381
PMC: 4244283.
DOI: 10.3934/dcdsb.2014.19.3133.
Transmission dynamics for vector-borne diseases in a patchy environment.
Xiao Y, Zou X
J Math Biol. 2013; 69(1):113-46.
PMID: 23732558
DOI: 10.1007/s00285-013-0695-1.
A MULTI-PATCH MALARIA MODEL WITH LOGISTIC GROWTH POPULATIONS.
Gao D, Ruan S
SIAM J Appl Math. 2013; 72(3):819-841.
PMID: 23723531
PMC: 3665429.
DOI: 10.1137/110850761.
A metapopulation model for malaria with transmission-blocking partial immunity in hosts.
Arino J, Ducrot A, Zongo P
J Math Biol. 2011; 64(3):423-48.
PMID: 21442182
DOI: 10.1007/s00285-011-0418-4.
The effects of human movement on the persistence of vector-borne diseases.
Cosner C, Beier J, Cantrell R, Impoinvil D, Kapitanski L, Potts M
J Theor Biol. 2009; 258(4):550-60.
PMID: 19265711
PMC: 2684576.
DOI: 10.1016/j.jtbi.2009.02.016.