Pan T, Luo D
Phys Imaging Radiat Oncol. 2024; 31:100601.
PMID: 39040434
PMC: 11261283.
DOI: 10.1016/j.phro.2024.100601.
Miyaji N, Miwa K, Yamashita K, Motegi K, Wagatsuma K, Kamitaka Y
Ann Nucl Med. 2023; 37(12):665-674.
PMID: 37796394
DOI: 10.1007/s12149-023-01870-9.
Li T, Xie Z, Qi W, Asma E, Qi J
Med Phys. 2023; 50(10):6047-6059.
PMID: 37538038
PMC: 10592231.
DOI: 10.1002/mp.16642.
Fragoso Costa P, Jentzen W, Brahmer A, Mavroeidi I, Zarrad F, Umutlu L
BMC Cancer. 2022; 22(1):899.
PMID: 35978274
PMC: 9387080.
DOI: 10.1186/s12885-022-09993-4.
Klen R, Teuho J, Noponen T, Thielemans K, Hoppela E, Lehtonen E
Sci Rep. 2020; 10(1):19362.
PMID: 33168859
PMC: 7653943.
DOI: 10.1038/s41598-020-75613-5.
Direct Reconstruction of CT-based Attenuation Correction Images for PET with Cluster-Based Penalties.
Kim S, Alessio A, De Man B, Kinahan P
IEEE Trans Nucl Sci. 2018; 64(3):959-968.
PMID: 30337765
PMC: 6191195.
DOI: 10.1109/TNS.2017.2654680.
Enhancing Cardiac PET by Motion Correction Techniques.
Rubeaux M, Doris M, Alessio A, Slomka P
Curr Cardiol Rep. 2017; 19(2):14.
PMID: 28185169
DOI: 10.1007/s11886-017-0825-2.
Impact of data-driven cardiac respiratory motion correction on the extent and severity of myocardial perfusion defects with free-breathing CZT SPECT.
Daou D, Sabbah R, Coaguila C, Boulahdour H
J Nucl Cardiol. 2017; 25(4):1299-1309.
PMID: 28160264
DOI: 10.1007/s12350-017-0806-2.
LROC Investigation of Three Strategies for Reducing the Impact of Respiratory Motion on the Detection of Solitary Pulmonary Nodules in SPECT.
Smyczynski M, Gifford H, Dey J, Lehovich A, McNamara J, Segars W
IEEE Trans Nucl Sci. 2016; 63(1):130-139.
PMID: 27182080
PMC: 4863469.
DOI: 10.1109/TNS.2015.2481825.
Feasibility of data-driven cardiac respiratory motion correction of myocardial perfusion CZT SPECT: A pilot study.
Daou D, Sabbah R, Coaguila C, Boulahdour H
J Nucl Cardiol. 2016; 24(5):1598-1607.
PMID: 27170338
DOI: 10.1007/s12350-016-0493-4.
On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework.
Kesner A, Schleyer P, Buther F, Walter M, Schafers K, Koo P
EJNMMI Phys. 2015; 1(1):8.
PMID: 26501450
PMC: 4673082.
DOI: 10.1186/2197-7364-1-8.
Linear relation between spirometric volume and the motion of cardiac structures: MRI and clinical PET study.
Kokki T, Klen R, Noponen T, Parkka J, Saunavaara V, Hoppela E
J Nucl Cardiol. 2015; 23(3):475-85.
PMID: 25698470
DOI: 10.1007/s12350-014-0057-4.
Application of partial volume effect correction and 4D PET in the quantification of FDG avid lung lesions.
Salavati A, Borofsky S, Boon-Keng T, Houshmand S, Khiewvan B, Saboury B
Mol Imaging Biol. 2014; 17(1):140-8.
PMID: 25080325
DOI: 10.1007/s11307-014-0776-6.
Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging.
Petibon Y, Huang C, Ouyang J, Reese T, Li Q, Syrkina A
Med Phys. 2014; 41(4):042503.
PMID: 24694156
PMC: 3971824.
DOI: 10.1118/1.4868458.
Gating, enhanced gating, and beyond: information utilization strategies for motion management, applied to preclinical PET.
Kesner A, Abourbeh G, Mishani E, Chisin R, Tshori S, Freedman N
EJNMMI Res. 2013; 3(1):29.
PMID: 23618039
PMC: 3648448.
DOI: 10.1186/2191-219X-3-29.
Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study.
Petibon Y, Ouyang J, Zhu X, Huang C, Reese T, Chun S
Phys Med Biol. 2013; 58(7):2085-102.
PMID: 23470288
PMC: 3657754.
DOI: 10.1088/0031-9155/58/7/2085.
MRI-based nonrigid motion correction in simultaneous PET/MRI.
Chun S, Reese T, Ouyang J, Guerin B, Catana C, Zhu X
J Nucl Med. 2012; 53(8):1284-91.
PMID: 22743250
PMC: 4077320.
DOI: 10.2967/jnumed.111.092353.
Impact of rigid and nonrigid registration on the determination of 18F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer.
Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A
Eur J Nucl Med Mol Imaging. 2011; 38(5):856-64.
PMID: 21258929
DOI: 10.1007/s00259-010-1719-3.