» Articles » PMID: 18780184

Structural Basis for Executioner Caspase Recognition of P5 Position in Substrates

Overview
Journal Apoptosis
Publisher Springer
Date 2008 Sep 10
PMID 18780184
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Caspase-3, -6 and -7 cleave many proteins at specific sites to induce apoptosis. Their recognition of the P5 position in substrates has been investigated by kinetics, modeling and crystallography. Caspase-3 and -6 recognize P5 in pentapeptides as shown by enzyme activity data and interactions observed in the crystal structure of caspase-3/LDESD and in a model for caspase-6. In caspase-3 the P5 main-chain was anchored by interactions with Ser209 in loop-3 and the P5 Leu side-chain interacted with Phe250 and Phe252 in loop-4 consistent with 50% increased hydrolysis of LDEVD relative to DEVD. Caspase-6 formed similar interactions and showed a preference for polar P5 in QDEVD likely due to interactions with polar Lys265 and hydrophobic Phe263 in loop-4. Caspase-7 exhibited no preference for P5 residue in agreement with the absence of P5 interactions in the caspase-7/LDESD crystal structure. Initiator caspase-8, with Pro in the P5-anchoring position and no loop-4, had only 20% activity on tested pentapeptides relative to DEVD. Therefore, caspases-3 and -6 bind P5 using critical loop-3 anchoring Ser/Thr and loop-4 side-chain interactions, while caspase-7 and -8 lack P5-binding residues.

Citing Articles

Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells.

Groborz K, Kalinka M, Grzymska J, Kolt S, Snipas S, Poreba M Chem Sci. 2023; 14(9):2289-2302.

PMID: 36873853 PMC: 9977399. DOI: 10.1039/d2sc05827h.


Conformational transitions of caspase-6 in substrate-induced activation process explored by perturbation-response scanning combined with targeted molecular dynamics.

Huang S, Mei H, Lu L, Kuang Z, Heng Y, Xu L Comput Struct Biotechnol J. 2021; 19:4156-4164.

PMID: 34527189 PMC: 8342898. DOI: 10.1016/j.csbj.2021.07.017.


Design of a Human Rhinovirus-14 3C Protease-Inducible Caspase-3.

Wagner H, Weber W Molecules. 2019; 24(10).

PMID: 31117169 PMC: 6571611. DOI: 10.3390/molecules24101945.


A closed conformation of the Caenorhabditis elegans separase-securin complex.

Bachmann G, Richards M, Winter A, Beuron F, Morris E, Bayliss R Open Biol. 2016; 6(4):160032.

PMID: 27249343 PMC: 4852461. DOI: 10.1098/rsob.160032.


Small Molecule Active Site Directed Tools for Studying Human Caspases.

Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen G, Drag M Chem Rev. 2015; 115(22):12546-629.

PMID: 26551511 PMC: 5610424. DOI: 10.1021/acs.chemrev.5b00434.


References
1.
Harrison R, Chatterjee D, Weber I . Analysis of six protein structures predicted by comparative modeling techniques. Proteins. 1995; 23(4):463-71. DOI: 10.1002/prot.340230402. View

2.
Kim H, Lee J, Soung Y, Park W, Kim S, Lee J . Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003; 125(3):708-15. DOI: 10.1016/s0016-5085(03)01059-x. View

3.
Hartmann A, Troadec J, Hunot S, Kikly K, Faucheux B, Mouatt-Prigent A . Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J Neurosci. 2001; 21(7):2247-55. PMC: 6762382. View

4.
Volkmann X, Cornberg M, Wedemeyer H, Lehner F, Manns M, Schulze-Osthoff K . Caspase activation is required for antiviral treatment response in chronic hepatitis C virus infection. Hepatology. 2006; 43(6):1311-6. DOI: 10.1002/hep.21186. View

5.
Schweizer A, Briand C, Grutter M . Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem. 2003; 278(43):42441-7. DOI: 10.1074/jbc.M304895200. View