» Articles » PMID: 18762653

Biomechanical Consequences of a Tear of the Posterior Root of the Medial Meniscus. Similar to Total Meniscectomy

Overview
Date 2008 Sep 3
PMID 18762653
Citations 335
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Tears of the posterior root of the medial meniscus are becoming increasingly recognized. They can cause rapidly progressive arthritis, yet their biomechanical effects are not understood. The goal of this study was to determine the effects of posterior root tears of the medial meniscus and their repairs on tibiofemoral joint contact pressure and kinematics.

Methods: Nine fresh-frozen cadaver knees were used. An axial load of 1000 N was applied with a custom testing jig at each of four knee-flexion angles: 0 degrees, 30 degrees, 60 degrees, and 90 degrees. The knees were otherwise unconstrained. Four conditions were tested: (1) intact, (2) a posterior root tear of the medial meniscus, (3) a repaired posterior root tear, and (4) a total medial meniscectomy. Fuji pressure-sensitive film was used to record the contact pressure and area for each testing condition. Kinematic data were obtained by using a robotic arm to record the position of the knees for each loading condition. Three-dimensional knee kinematics were analyzed with custom programs with use of previously described transformations. The measured variables were axial rotation, varus angulation, lateral translation, and anterior translation.

Results: In the medial compartment, a posterior root tear of the medial meniscus caused a 25% increase in peak contact pressure compared with that found in the intact condition (p < 0.001). Repair restored the peak contact pressure to normal. No difference was detected between the peak contact pressure after the total medial meniscectomy and that associated with the root tear. The peak contact pressure in the lateral compartment after the total medial meniscectomy was up to 13% greater than that for all other conditions (p = 0.026). Significant increases in external rotation and lateral tibial translation, compared with the values in the intact knee, were observed in association with the posterior root tear (2.98 degrees and 0.84 mm, respectively) and the meniscectomy (4.45 degrees and 0.80 mm, respectively), and these increases were corrected by the repair.

Conclusions: This study demonstrated significant changes in contact pressure and knee joint kinematics due to a posterior root tear of the medial meniscus. Root repair was successful in restoring joint biomechanics to within normal conditions.

Citing Articles

Lateral femoral condyle cartilage lesions in chronic posterior lateral meniscus root tears: A report of seven cases.

Grassi A, Altovino E, Ambrosini L, Rossi C, Andriolo L, Filardo G J Exp Orthop. 2025; 12(1):e70194.

PMID: 40059960 PMC: 11888773. DOI: 10.1002/jeo2.70194.


Biomechanics of Meniscus Tears and Repair Techniques.

Ina J, Nelson G, Strony J, Tagliero A, Calcei J, Krych A Curr Rev Musculoskelet Med. 2025; .

PMID: 40042779 DOI: 10.1007/s12178-025-09958-7.


Medial Meniscal Posterior Root Tears Are Associated With Steeper Medial Posterior Tibial Slope and Varus Alignment.

Allende F, Garcia J, Ayala S, Dzidzishvili L, Quiroga G, Allahabadi S Arthrosc Sports Med Rehabil. 2025; 7(1):100998.

PMID: 40041827 PMC: 11873484. DOI: 10.1016/j.asmr.2024.100998.


Anterior cruciate ligament tissue stiffness and anterior tibial translation are increased in patients with medial meniscus posterior root tear.

Karatekin Y, Altinayak H, Genc A, Yalcinkaya M, Buruk M, Balta O J Orthop Surg Res. 2025; 20(1):228.

PMID: 40025524 PMC: 11874387. DOI: 10.1186/s13018-025-05601-w.


Arthroscopic Repair of the Medial Meniscal Root Tear: A Simple Surgical Technique.

Ayati Firoozabadi M, Seyedtabaei S, Rezaee H, Salkhori O, Mortazavi S Arthrosc Tech. 2025; 14(1):103186.

PMID: 39989700 PMC: 11843320. DOI: 10.1016/j.eats.2024.103186.