» Articles » PMID: 18725643

Lignin Degradation in Wood-feeding Insects

Overview
Specialty Science
Date 2008 Aug 30
PMID 18725643
Citations 86
Authors
Affiliations
Soon will be listed here.
Abstract

The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.

Citing Articles

Bacterial community profiling and identification of bacteria with lignin-degrading potential in different gut segments of African palm weevil larvae ().

Lenka J, Gonzalez-Tortuero E, Kuba S, Ferry N Front Microbiol. 2025; 15():1401965.

PMID: 39831119 PMC: 11739302. DOI: 10.3389/fmicb.2024.1401965.


Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut.

Salgado J, Herve V, Vera M, Tokuda G, Brune A Microbiome. 2024; 12(1):201.

PMID: 39407345 PMC: 11481507. DOI: 10.1186/s40168-024-01917-7.


Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition.

Nweze J, Gupta S, Salcher M, Sustr V, Horvathova T, Angel R Commun Biol. 2024; 7(1):1204.

PMID: 39342029 PMC: 11438867. DOI: 10.1038/s42003-024-06821-2.


Investigating the lignocellulolytic gut microbiome of huhu grubs () using defined diets and dietary switch.

Viswam J, Baptista M, Lee C, Morgan H, McDonald I PeerJ. 2024; 12:e17597.

PMID: 38974417 PMC: 11225714. DOI: 10.7717/peerj.17597.


Microbial associates of the elm leaf beetle: uncovering the absence of resident bacteria and the influence of fungi on insect performance.

Schott J, Rakei J, Remus-Emsermann M, Johnston P, Mbedi S, Sparmann S Appl Environ Microbiol. 2024; 90(1):e0105723.

PMID: 38179921 PMC: 10807431. DOI: 10.1128/aem.01057-23.


References
1.
Johnson , V Barbehenn R . Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol. 2000; 46(6):897-903. DOI: 10.1016/s0022-1910(99)00196-1. View

2.
Lozovaya V, Lygin A, Zernova O, Li S, Widholm J, Hartman G . Lignin Degradation by Fusarium solani f. sp. glycines. Plant Dis. 2019; 90(1):77-82. DOI: 10.1094/PD-90-0077. View

3.
Kukor J, Martin M . Cellulose digestion inMonochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes. J Chem Ecol. 2013; 12(5):1057-70. DOI: 10.1007/BF01638996. View

4.
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson T, Stege J . Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007; 450(7169):560-5. DOI: 10.1038/nature06269. View

5.
Watanabe Y, Shinzato N, Fukatsu T . Isolation of actinomycetes from termites' guts. Biosci Biotechnol Biochem. 2003; 67(8):1797-801. DOI: 10.1271/bbb.67.1797. View