Li F, Shrivastava I, Hanlon P, Dagda R, Gasanoff E
Toxins (Basel). 2020; 12(7).
PMID: 32605112
PMC: 7404710.
DOI: 10.3390/toxins12070425.
Gasanov S, Kim A, Yaguzhinsky L, Dagda R
Biochim Biophys Acta Biomembr. 2017; 1860(2):586-599.
PMID: 29179995
PMC: 5755587.
DOI: 10.1016/j.bbamem.2017.11.014.
Fillion M, Auger M
Biophys Rev. 2017; 7(3):311-320.
PMID: 28510228
PMC: 5425733.
DOI: 10.1007/s12551-015-0167-5.
Gasanov S, Kim A, Dagda R
Biophysics (Oxf). 2017; 61(4):596-600.
PMID: 28065984
PMC: 5215001.
DOI: 10.1134/S0006350916040084.
Rabe M, Aisenbrey C, Pluhackova K, de Wert V, Boyle A, Bruggeman D
Biophys J. 2016; 111(10):2162-2175.
PMID: 27851940
PMC: 5113151.
DOI: 10.1016/j.bpj.2016.10.010.
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins.
Gasanov S, Shrivastava I, Israilov F, Kim A, Rylova K, Zhang B
PLoS One. 2015; 10(6):e0129248.
PMID: 26091109
PMC: 4474699.
DOI: 10.1371/journal.pone.0129248.
Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy.
Resende J, Verly R, Aisenbrey C, Cesar A, Bertani P, Pilo-Veloso D
Biophys J. 2014; 107(4):901-11.
PMID: 25140425
PMC: 4142234.
DOI: 10.1016/j.bpj.2014.07.014.
On the role of NMR spectroscopy for characterization of antimicrobial peptides.
Porcelli F, Ramamoorthy A, Barany G, Veglia G
Methods Mol Biol. 2013; 1063:159-80.
PMID: 23975777
PMC: 4988059.
DOI: 10.1007/978-1-62703-583-5_9.
A practical implementation of de-Pake-ing via weighted Fourier transformation.
Sani M, Weber D, Delaglio F, Separovic F, Gehman J
PeerJ. 2013; 1:e30.
PMID: 23638366
PMC: 3628600.
DOI: 10.7717/peerj.30.
Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
Bertelsen K, Dorosz J, Hansen S, Nielsen N, Vosegaard T
PLoS One. 2012; 7(10):e47745.
PMID: 23094079
PMC: 3475706.
DOI: 10.1371/journal.pone.0047745.
NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide.
Wang T, Cady S, Hong M
Biophys J. 2012; 102(4):787-94.
PMID: 22385849
PMC: 3283775.
DOI: 10.1016/j.bpj.2012.01.010.
Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance.
Su Y, Waring A, Ruchala P, Hong M
Biochemistry. 2011; 50(12):2072-83.
PMID: 21302955
PMC: 3062705.
DOI: 10.1021/bi101975v.
Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367.
Thennarasu S, Huang R, Lee D, Yang P, Maloy L, Chen Z
Biochemistry. 2010; 49(50):10595-605.
PMID: 21062093
PMC: 3006059.
DOI: 10.1021/bi101394r.
Importance of residue 13 and the C-terminus for the structure and activity of the antimicrobial peptide aurein 2.2.
Cheng J, Hale J, Kindrachuk J, Jenssen H, Jessen H, Elliott M
Biophys J. 2010; 99(9):2926-35.
PMID: 21044590
PMC: 2965939.
DOI: 10.1016/j.bpj.2010.08.077.
Computational studies of protegrin antimicrobial peptides: a review.
Bolintineanu D, Kaznessis Y
Peptides. 2010; 32(1):188-201.
PMID: 20946928
PMC: 3013618.
DOI: 10.1016/j.peptides.2010.10.006.
Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins.
Saito H, Ando I, Ramamoorthy A
Prog Nucl Magn Reson Spectrosc. 2010; 57(2):181-228.
PMID: 20633363
PMC: 2905606.
DOI: 10.1016/j.pnmrs.2010.04.005.
Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy.
Hartmann M, Berditsch M, Hawecker J, Ardakani M, Gerthsen D, Ulrich A
Antimicrob Agents Chemother. 2010; 54(8):3132-42.
PMID: 20530225
PMC: 2916356.
DOI: 10.1128/AAC.00124-10.
Solid-state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in biomembranes.
Smith P, Brender J, Durr U, Xu J, Mullen D, Banaszak Holl M
J Am Chem Soc. 2010; 132(23):8087-97.
PMID: 20481633
PMC: 2886017.
DOI: 10.1021/ja101524z.
Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy.
Li S, Su Y, Luo W, Hong M
J Phys Chem B. 2010; 114(11):4063-9.
PMID: 20199036
PMC: 2853767.
DOI: 10.1021/jp912283r.
Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption.
Vad B, Bertelsen K, Johansen C, Pedersen J, Skrydstrup T, Nielsen N
Biophys J. 2010; 98(4):576-85.
PMID: 20159154
PMC: 2820650.
DOI: 10.1016/j.bpj.2009.08.063.