» Articles » PMID: 18677487

Dual Energy CT: Preliminary Observations and Potential Clinical Applications in the Abdomen

Overview
Journal Eur Radiol
Specialty Radiology
Date 2008 Aug 5
PMID 18677487
Citations 126
Authors
Affiliations
Soon will be listed here.
Abstract

Dual energy CT (DECT) is a new technique that allows differentiation of materials and tissues based on CT density values derived from two synchronous CT acquisitions at different tube potentials. With the introduction of a new dual source CT system, this technique can now be used routinely in abdominal imaging. Potential clinical applications include evaluation of renal masses, liver lesions, urinary calculi, small bowel, pancreas, and adrenal glands. In CT angiography of abdominal aortic aneurysms, dual energy CT techniques can be used to remove bones from the datasets, and virtual unenhanced images allow differentiation of contrast agent from calcifying thrombus in patients with endovascular stents. This review describes potential applications, practical guidelines, and limitations of dual energy CT in the abdomen.

Citing Articles

The Impact of Weighting Factors on Dual-Energy Computed Tomography Image Quality in Non-Contrast Head Examinations: Phantom and Patient Study.

Segota Ritosa D, Dodig D, Kovacic S, Bartolovic N, Brumini I, Valkovic Zujic P Diagnostics (Basel). 2025; 15(2).

PMID: 39857064 PMC: 11763815. DOI: 10.3390/diagnostics15020180.


Generation of deep learning based virtual non-contrast CT using dual-layer dual-energy CT and its application to planning CT for radiotherapy.

Kim J, Lee J, Kim B, Kim S, Jin H, Jung S PLoS One. 2025; 19(12):e0316099.

PMID: 39775325 PMC: 11684624. DOI: 10.1371/journal.pone.0316099.


Impact of image formation factors on material discrimination in spectral CT.

Rajagopal J, Zarei M, Vrbaski S, Pritchard W, Abadi E, Jones E Phys Med Biol. 2024; 70(1.

PMID: 39662049 PMC: 11736991. DOI: 10.1088/1361-6560/ad9daf.


Comparison of dual-energy computed tomography (DECT) polychromatic and monochromatic images with and without iterative metal artifact reduction algorithm in patients with dental implants.

Huang S, Liang Y, Yao X, Qin X, He C, Luo L Quant Imaging Med Surg. 2024; 14(7):4688-4702.

PMID: 39022239 PMC: 11250342. DOI: 10.21037/qims-24-19.


Development of a separability index for task specific characterization of spectral computed tomography.

Rajagopal J, Farhadi F, Solomon J, Saboury B, Sahbaee P, Negussie A Phys Med. 2024; 122:103382.

PMID: 38820805 PMC: 11185224. DOI: 10.1016/j.ejmp.2024.103382.


References
1.
Kluner C, Hein P, Gralla O, Hein E, Hamm B, Romano V . Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi?. J Comput Assist Tomogr. 2005; 30(1):44-50. DOI: 10.1097/01.rct.0000191685.58838.ef. View

2.
Scheffel H, Stolzmann P, Frauenfelder T, Schertler T, Desbiolles L, Leschka S . Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol. 2007; 42(12):823-9. DOI: 10.1097/RLI.0b013e3181379bac. View

3.
Nakada S, Hoff D, Attai S, Heisey D, Blankenbaker D, Pozniak M . Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000; 55(6):816-9. DOI: 10.1016/s0090-4295(00)00518-5. View

4.
GOLDBERG H, Cann C, Moss A, OHTO M, Brito A, Federle M . Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol. 1982; 17(4):375-80. DOI: 10.1097/00004424-198207000-00013. View

5.
Hounsfield G . Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. Br J Radiol. 1995; 68(815):H166-72. View