» Articles » PMID: 18635153

A Pilot Study of Fourier-domain Optical Coherence Tomography of Retinal Dystrophy Patients

Overview
Journal Am J Ophthalmol
Specialty Ophthalmology
Date 2008 Jul 19
PMID 18635153
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To characterize the macular anatomy of retinal dystrophy eyes using high-speed, high-resolution, Fourier-domain optical coherence tomography (FD-OCT).

Design: Case-control study.

Methods: Retinal dystrophy patients and normal age- and gender-matched controls underwent FD-OCT imaging using the RTVue (Optovue Inc., Fremont, California, USA). Vertical and horizontal 8-mm scans of 1024 lines/cross-section were obtained. Based on boundaries manually drawn on computer displays of OCT cross-sections, the thicknesses of the retina, inner retinal layer (IRL), and outer retinal layer (ORL) were averaged over both 5-mm (macular) and 1.5-mm (foveal) regions centered at the fovea. The IRL was the sum of nerve fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) thicknesses. Total retinal thickness (RT) was measured between the internal limiting membrane (ILM) and the retinal pigment epithelium. ORL thickness was calculated by subtracting IRL thickness from RT.

Results: Fourteen patients (three retinitis pigmentosa, two cone-rod degeneration, two Stargardt disease, and seven normal controls) underwent FD-OCT imaging. Mean foveal RT was 271.3 +/- 23.3 microm for controls and 158.4 +/- 47.1 microm for retinal dystrophy patients (P < .001). Mean macular RT was 292.8 +/- 8.1 microm for controls and 199.1 +/- 32.6 microm for retinal dystrophy patients (P < .001). Mean macular ORL was 182.9 +/- 4.7 microm for controls and 101.3 +/- 18.7 microm for retinal dystrophy patients (P < .001); mean macular IRL was 109.9 +/- 6.4 microm for controls and 97.9 +/- 20.7 microm for retinal dystrophy patients (P = .06).

Conclusion: Eyes with retinal dystrophy had a small (11%) decrease in macular IRL and severe (45%) decrease in macular ORL compared to normal controls.

Citing Articles

Cell-Type-Specific Complement Profiling in the ABCA4 Mouse Model of Stargardt Disease.

Jabri Y, Biber J, Diaz-Lezama N, Grosche A, Pauly D Int J Mol Sci. 2020; 21(22).

PMID: 33187113 PMC: 7697683. DOI: 10.3390/ijms21228468.


Measurement of macular thickness with optical coherence tomography: impact of using a paediatric reference database and analysis of interocular symmetry.

Munoz-Gallego A, Torres-Pena J, Rodriguez-Salgado M, Ortueta-Olartecoechea A, Lopez-Lopez C, DE LA Cruz J Graefes Arch Clin Exp Ophthalmol. 2020; 259(2):533-545.

PMID: 32860574 DOI: 10.1007/s00417-020-04903-5.


The qualitative assessment of optical coherence tomography and the central retinal sensitivity in patients with retinitis pigmentosa.

Hara A, Nakazawa M, Saito M, Suzuki Y PLoS One. 2020; 15(5):e0232700.

PMID: 32392207 PMC: 7213731. DOI: 10.1371/journal.pone.0232700.


Progression of Anterograde Trans-Synaptic Degeneration in the Human Retina Is Modulated by Axonal Convergence and Divergence.

Panneman E, Coric D, Tran L, de Vries-Knoppert W, Petzold A Neuroophthalmology. 2020; 43(6):382-390.

PMID: 32165897 PMC: 7053976. DOI: 10.1080/01658107.2019.1599027.


Heritability of Inner Retinal Layer and Outer Retinal Layer Thickness: The Healthy Twin Study.

Kong M, Hwang S, Ko H, Song Y, Ham D Sci Rep. 2020; 10(1):3519.

PMID: 32103112 PMC: 7044332. DOI: 10.1038/s41598-020-60612-3.


References
1.
Milam A, Li Z, Fariss R . Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res. 1998; 17(2):175-205. DOI: 10.1016/s1350-9462(97)00012-8. View

2.
Leitgeb R, Hitzenberger C, Fercher A . Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2009; 11(8):889-94. DOI: 10.1364/oe.11.000889. View

3.
Huber R, Adler D, Fujimoto J . Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett. 2006; 31(20):2975-7. DOI: 10.1364/ol.31.002975. View

4.
Wojtkowski M, Srinivasan V, Fujimoto J, Ko T, Schuman J, Kowalczyk A . Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005; 112(10):1734-46. PMC: 1939719. DOI: 10.1016/j.ophtha.2005.05.023. View

5.
Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko T, Sattmann H . Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2004; 46(1):310-6. DOI: 10.1167/iovs.04-0212. View