» Articles » PMID: 18625717

No Overt Nucleosome Eviction at Deprotected Telomeres

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2008 Jul 16
PMID 18625717
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Dysfunctional telomeres elicit the canonical DNA damage response, which includes the activation of the ATM or ATR kinase signaling pathways and end processing by nonhomologous end joining (NHEJ) or homologous recombination (HR). The cellular response to DNA double-strand breaks has been proposed to involve chromatin remodeling and nucleosome eviction, but whether dysfunctional telomeres undergo chromatin reorganization is not known. Here, we report on the nucleosomal organization of telomeres that have become deprotected through the deletion of the shelterin components TRF2 or POT1. We found no evidence of changes in the nucleosomal organization of the telomeric chromatin or nucleosome eviction near the telomere terminus. An unaltered chromatin structure was observed at telomeres lacking TRF2, which activate the ATM kinase and are a substrate for NHEJ. Similarly, telomeres lacking POT1a and POT1b, which activate the ATR kinase, showed no overt nucleosome eviction. Finally, telomeres lacking TRF2 and Ku70, which are processed by HR, appeared to maintain their original nucleosomal organization. We conclude that ATM signaling, ATR signaling, NHEJ, and HR at deprotected telomeres can take place in the absence of overt nucleosome eviction.

Citing Articles

Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization.

Lim C, Cech T Nat Rev Mol Cell Biol. 2021; 22(4):283-298.

PMID: 33564154 PMC: 8221230. DOI: 10.1038/s41580-021-00328-y.


BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1.

Wu S, Ge Y, Li X, Yang Y, Zhou H, Lin K PLoS Genet. 2020; 16(6):e1008799.

PMID: 32502208 PMC: 7299400. DOI: 10.1371/journal.pgen.1008799.


Chromatin fiber structural motifs as regulatory hubs of genome function?.

Moraru M, Schalch T Essays Biochem. 2019; 63(1):123-132.

PMID: 30967476 PMC: 6484786. DOI: 10.1042/EBC20180065.


Emerging roles of telomeric chromatin alterations in cancer.

Cacchione S, Biroccio A, Rizzo A J Exp Clin Cancer Res. 2019; 38(1):21.

PMID: 30654820 PMC: 6337846. DOI: 10.1186/s13046-019-1030-5.


Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection.

Chow T, Shi X, Wei J, Guan J, Stadler G, Huang B Nat Commun. 2018; 9(1):3583.

PMID: 30181605 PMC: 6123478. DOI: 10.1038/s41467-018-05840-y.


References
1.
Morrison A, Highland J, Krogan N, Arbel-Eden A, Greenblatt J, Haber J . INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell. 2004; 119(6):767-75. DOI: 10.1016/j.cell.2004.11.037. View

2.
Wright W, Tesmer V, Huffman K, Levene S, Shay J . Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997; 11(21):2801-9. PMC: 316649. DOI: 10.1101/gad.11.21.2801. View

3.
Hockemeyer D, Daniels J, Takai H, de Lange T . Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell. 2006; 126(1):63-77. DOI: 10.1016/j.cell.2006.04.044. View

4.
Konishi A, de Lange T . Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes Dev. 2008; 22(9):1221-30. PMC: 2335317. DOI: 10.1101/gad.1634008. View

5.
Kacian D, Spiegelman S . Use of micrococcal nuclease to monitor hybridization reactions with DNA. Anal Biochem. 1974; 58(2):534-40. DOI: 10.1016/0003-2697(74)90221-8. View