» Articles » PMID: 18621717

Distinct Conformational Changes in Beta-arrestin Report Biased Agonism at Seven-transmembrane Receptors

Overview
Specialty Science
Date 2008 Jul 16
PMID 18621717
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

Beta-arrestins critically regulate G protein-coupled receptors (GPCRs), also known as seven-transmembrane receptors (7TMRs), both by inhibiting classical G protein signaling and by initiating distinct beta-arrestin-mediated signaling. The recent discovery of beta-arrestin-biased ligands and receptor mutants has allowed characterization of these independent "G protein-mediated" and "beta-arrestin-mediated" signaling mechanisms of 7TMRs. However, the molecular mechanisms underlying the dual functions of beta-arrestins remain unclear. Here, using an intramolecular BRET (bioluminescence resonance energy transfer)-based biosensor of beta-arrestin 2 and a combination of biased ligands and/or biased mutants of three different 7TMRs, we provide evidence that beta-arrestin can adopt multiple "active" conformations. Surprisingly, phosphorylation-deficient mutants of the receptors are also capable of directing similar conformational changes in beta-arrestin as is the wild-type receptor. This indicates that distinct receptor conformations induced and/or stabilized by different ligands can promote distinct and functionally specific conformations in beta-arrestin even in the absence of receptor phosphorylation. Our data thus highlight another interesting aspect of 7TMR signaling--i.e., functionally specific receptor conformations can be translated to downstream effectors such as beta-arrestins, thereby governing their functional specificity.

Citing Articles

Post-translational modifications orchestrate the intrinsic signaling bias of GPR52.

Zhang B, Ge W, Ma M, Li S, Yu J, Yang G Nat Chem Biol. 2025; .

PMID: 40087539 DOI: 10.1038/s41589-025-01864-w.


Receptor Determinants for β-Arrestin Functional Specificity at Chemokine Receptor 5.

Crecelius J, Manz A, Benzow S, Marchese A Mol Pharmacol. 2024; 106(6):287-297.

PMID: 39472027 PMC: 11585254. DOI: 10.1124/molpharm.124.000942.


Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors.

Toth A, Turu G, Hunyady L Nat Rev Nephrol. 2024; 20(11):722-741.

PMID: 39039165 DOI: 10.1038/s41581-024-00869-3.


Internalized β2-Adrenergic Receptors Oppose PLC-Dependent Hypertrophic Signaling.

Wei W, Smrcka A Circ Res. 2024; 135(2):e24-e38.

PMID: 38813686 PMC: 11223973. DOI: 10.1161/CIRCRESAHA.123.323201.


Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors.

Maharana J, Sano F, Sarma P, Yadav M, Duan L, Stepniewski T Science. 2024; 383(6678):101-108.

PMID: 38175886 PMC: 7615931. DOI: 10.1126/science.adj3347.


References
1.
Storez H, Scott M, Issafras H, Burtey A, Benmerah A, Muntaner O . Homo- and hetero-oligomerization of beta-arrestins in living cells. J Biol Chem. 2005; 280(48):40210-5. DOI: 10.1074/jbc.M508001200. View

2.
Shenoy S, Drake M, Nelson C, Houtz D, Xiao K, Madabushi S . beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem. 2005; 281(2):1261-73. DOI: 10.1074/jbc.M506576200. View

3.
Pierce K, Premont R, Lefkowitz R . Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002; 3(9):639-50. DOI: 10.1038/nrm908. View

4.
Reiter E, Lefkowitz R . GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab. 2006; 17(4):159-65. DOI: 10.1016/j.tem.2006.03.008. View

5.
Azzi M, Charest P, Angers S, Rousseau G, Kohout T, Bouvier M . Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003; 100(20):11406-11. PMC: 208770. DOI: 10.1073/pnas.1936664100. View