» Articles » PMID: 18586846

A Hybrid Model for Three-dimensional Simulations of Sprouting Angiogenesis

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2008 Jul 1
PMID 18586846
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in cancer research have identified critical angiogenic signaling pathways and the influence of the extracellular matrix on endothelial cell migration. These findings provide us with insight into the process of angiogenesis that can facilitate the development of effective computational models of sprouting angiogenesis. In this work, we present the first three-dimensional model of sprouting angiogenesis that considers explicitly the effect of the extracellular matrix and of the soluble as well as matrix-bound growth factors on capillary growth. The computational model relies on a hybrid particle-mesh representation of the blood vessels and it introduces an implicit representation of the vasculature that can accommodate detailed descriptions of nutrient transport. Extensive parametric studies reveal the role of the extracellular matrix structure and the distribution of the different vascular endothelial growth factors isoforms on the dynamics and the morphology of the generated vascular networks.

Citing Articles

Angiogenesis Dynamics: A Computational Model of Intravascular Flow Within a Structural Adaptive Vascular Network.

Nivlouei S, Guerra A, Belinha J, Mangir N, MacNeil S, Salgado C Biomedicines. 2025; 12(12.

PMID: 39767751 PMC: 11673541. DOI: 10.3390/biomedicines12122845.


Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist.

Crossley R, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M Front Cell Dev Biol. 2024; 12:1354132.

PMID: 38495620 PMC: 10940354. DOI: 10.3389/fcell.2024.1354132.


Bridging Scales: a Hybrid Model to Simulate Vascular Tumor Growth and Treatment Response.

Duswald T, Lima E, Oden J, Wohlmuth B ArXiv. 2023; .

PMID: 37332572 PMC: 10274951.


A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion.

Lopes C, Curty J, Carvalho F, Hernandez-Machado A, Kinoshita K, Santos N Commun Biol. 2023; 6(1):192.

PMID: 36801914 PMC: 9938206. DOI: 10.1038/s42003-023-04560-4.


On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches.

Abdalrahman T, Checa S Biomech Model Mechanobiol. 2022; 21(6):1623-1640.

PMID: 36394779 PMC: 9700567. DOI: 10.1007/s10237-022-01648-4.


References
1.
Mac Gabhann F, Popel A . Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol. 2006; 292(1):H459-74. DOI: 10.1152/ajpheart.00637.2006. View

2.
Melnyk O, Shuman M, Kim K . Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res. 1996; 56(4):921-4. View

3.
Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I . VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. 1997; 272(11):7151-8. DOI: 10.1074/jbc.272.11.7151. View

4.
Lee S, Jilani S, Nikolova G, Carpizo D, Iruela-Arispe M . Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005; 169(4):681-91. PMC: 2171712. DOI: 10.1083/jcb.200409115. View

5.
Bauer A, Jackson T, Jiang Y . A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J. 2007; 92(9):3105-21. PMC: 1852370. DOI: 10.1529/biophysj.106.101501. View