» Articles » PMID: 18584079

Stop-flow Lithography to Generate Cell-laden Microgel Particles

Overview
Journal Lab Chip
Specialties Biotechnology
Chemistry
Date 2008 Jun 28
PMID 18584079
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Encapsulating cells within hydrogels is important for generating three-dimensional (3D) tissue constructs for drug delivery and tissue engineering. This paper describes, for the first time, the fabrication of large numbers of cell-laden microgel particles using a continuous microfluidic process called stop-flow lithography (SFL). Prepolymer solution containing cells was flowed through a microfluidic device and arrays of individual particles were repeatedly defined using pulses of UV light through a transparency mask. Unlike photolithography, SFL can be used to synthesize microgel particles continuously while maintaining control over particle size, shape and anisotropy. Therefore, SFL may become a useful tool for generating cell-laden microgels for various biomedical applications.

Citing Articles

The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration.

Lin C, Srioudom J, Sun W, Xing M, Yan S, Yu L Biomater Transl. 2024; 5(3):236-256.

PMID: 39734701 PMC: 11681182. DOI: 10.12336/biomatertransl.2024.03.003.


3D polymerization (-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel.

Ramirez-Alvarado G, Garibaldi G, Toujani C, Sun G Biomicrofluidics. 2024; 18(5):054113.

PMID: 39464241 PMC: 11510685. DOI: 10.1063/5.0226620.


Interplay between materials and microfluidics.

Hou X, Zhang Y, Trujillo-de Santiago G, Alvarez M, Ribas J, Jonas S Nat Rev Mater. 2024; 2(5).

PMID: 38993477 PMC: 11237287. DOI: 10.1038/natrevmats.2017.16.


Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications.

Ryoo H, Kimmel H, Rondo E, Underhill G Bioeng Transl Med. 2024; 9(3):e10627.

PMID: 38818120 PMC: 11135158. DOI: 10.1002/btm2.10627.


Ultra-low content physio-chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture.

Asim S, Hayhurst E, Callaghan R, Rizwan M Int J Biol Macromol. 2024; 264(Pt 2):130657.

PMID: 38458282 PMC: 11003839. DOI: 10.1016/j.ijbiomac.2024.130657.


References
1.
Veerabadran N, Goli P, Stewart-Clark S, Lvov Y, Mills D . Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol Biosci. 2007; 7(7):877-82. DOI: 10.1002/mabi.200700061. View

2.
Lanza R, Hayes J, Chick W . Encapsulated cell technology. Nat Biotechnol. 1996; 14(9):1107-11. DOI: 10.1038/nbt0996-1107. View

3.
Bowden , Terfort , Carbeck , Whitesides . Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays. Science. 1997; 276(5310):233-5. DOI: 10.1126/science.276.5310.233. View

4.
Khademhosseini A, Bettinger C, Karp J, Yeh J, Ling Y, Borenstein J . Interplay of biomaterials and micro-scale technologies for advancing biomedical applications. J Biomater Sci Polym Ed. 2006; 17(11):1221-40. DOI: 10.1163/156856206778667488. View

5.
Manoharan V, Elsesser M, Pine D . Dense packing and symmetry in small clusters of microspheres. Science. 2003; 301(5632):483-7. DOI: 10.1126/science.1086189. View