Bamigbade G, Subhash A, Kamal-Eldin A, Nystrom L, Ayyash M
Molecules. 2022; 27(18).
PMID: 36144679
PMC: 9505924.
DOI: 10.3390/molecules27185947.
Rawi M, Zaman S, Paee K, Leong S, Sarbini S
J Food Sci Technol. 2020; 57(8):2786-2799.
PMID: 32624588
PMC: 7316907.
DOI: 10.1007/s13197-020-04244-5.
Kittibunchakul S, van Leeuwen S, Dijkhuizen L, Haltrich D, Nguyen T
J Agric Food Chem. 2020; 68(15):4437-4446.
PMID: 32196339
PMC: 7168588.
DOI: 10.1021/acs.jafc.9b08156.
Pham M, Tran A, Kittibunchakul S, Nguyen T, Mathiesen G, Nguyen T
Catalysts. 2019; 9(5):443.
PMID: 31595189
PMC: 6783300.
DOI: 10.3390/catal9050443.
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S
Foods. 2019; 8(3).
PMID: 30857316
PMC: 6463098.
DOI: 10.3390/foods8030092.
β-Galactosidase from DSM 20075: Biochemical Characterization and Recombinant Expression for Applications in Dairy Industry.
Kittibunchakul S, Pham M, Tran A, Nguyen T
Int J Mol Sci. 2019; 20(4).
PMID: 30813223
PMC: 6412629.
DOI: 10.3390/ijms20040947.
A Review of Prebiotics Against in Poultry: Current and Future Potential for Microbiome Research Applications.
Micciche A, Foley S, Pavlidis H, McIntyre D, Ricke S
Front Vet Sci. 2018; 5:191.
PMID: 30159318
PMC: 6104193.
DOI: 10.3389/fvets.2018.00191.
Sources of β-galactosidase and its applications in food industry.
Saqib S, Akram A, Ahsan Halim S, Tassaduq R
3 Biotech. 2017; 7(1):79.
PMID: 28500401
PMC: 5429307.
DOI: 10.1007/s13205-017-0645-5.
Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron.
Lammerts van Bueren A, Mulder M, van Leeuwen S, Dijkhuizen L
Sci Rep. 2017; 7:40478.
PMID: 28091546
PMC: 5238430.
DOI: 10.1038/srep40478.
From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from .
Geiger B, Nguyen H, Wenig S, Nguyen H, Lorenz C, Kittl R
Biochem Eng J. 2016; 116:45-53.
PMID: 27885320
PMC: 5117255.
DOI: 10.1016/j.bej.2016.04.003.
β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design.
Kazemi S, Khayati G, Faezi-Ghasemi M
Iran Biomed J. 2016; 20(5):287-294.
PMID: 27721510
PMC: 5075142.
DOI: 10.22045/ibj.2016.06.
Two β-galactosidases from the human isolate Bifidobacterium breve DSM 20213: molecular cloning and expression, biochemical characterization and synthesis of galacto-oligosaccharides.
Arreola S, Intanon M, Suljic J, Kittl R, Pham N, Kosma P
PLoS One. 2014; 9(8):e104056.
PMID: 25089712
PMC: 4121272.
DOI: 10.1371/journal.pone.0104056.
β-galactosidase stability at high substrate concentrations.
Warmerdam A, Boom R, Janssen A
Springerplus. 2013; 2:402.
PMID: 24024090
PMC: 3765595.
DOI: 10.1186/2193-1801-2-402.
Potential Applications of Immobilized β-Galactosidase in Food Processing Industries.
Panesar P, Kumari S, Panesar R
Enzyme Res. 2011; 2010:473137.
PMID: 21234407
PMC: 3014700.
DOI: 10.4061/2010/473137.
Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96.
Hung M, Xia Z, Hu N, Lee B
Appl Environ Microbiol. 2001; 67(9):4256-63.
PMID: 11526031
PMC: 93155.
DOI: 10.1128/AEM.67.9.4256-4263.2001.
Characterization and some reaction-engineering aspects of thermostable extracellular beta-galactosidase from a new Bacillus species.
Sani R, Chakraborti S, Sobti R, Patnaik P, Banerjee U
Folia Microbiol (Praha). 2000; 44(4):367-71.
PMID: 10983230
DOI: 10.1007/BF02903706.
Characterization of a novel beta-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides.
Van Laere K, Abee T, Schols H, Beldman G, Voragen A
Appl Environ Microbiol. 2000; 66(4):1379-84.
PMID: 10742215
PMC: 91996.
DOI: 10.1128/AEM.66.4.1379-1384.2000.
Identification of new enzyme activities of several strains of Thermus species.
Berger J, Lee B, Lacroix C
Appl Microbiol Biotechnol. 1995; 44(1-2):81-7.
PMID: 8579838
DOI: 10.1007/BF00164484.