Bower M
Front Netw Physiol. 2024; 4:1430934.
PMID: 39238837
PMC: 11374659.
DOI: 10.3389/fnetp.2024.1430934.
Lai S, Zhang L, Tu X, Ma X, Song Y, Cao K
Sci Adv. 2024; 10(12):eadk9484.
PMID: 38507477
PMC: 10954199.
DOI: 10.1126/sciadv.adk9484.
Brohl T, Rings T, Pukropski J, von Wrede R, Lehnertz K
Front Netw Physiol. 2024; 3:1338864.
PMID: 38293249
PMC: 10825060.
DOI: 10.3389/fnetp.2023.1338864.
Schroeder G, Karoly P, Maturana M, Panagiotopoulou M, Taylor P, Cook M
Brain Commun. 2023; 5(5):fcad205.
PMID: 37693811
PMC: 10484289.
DOI: 10.1093/braincomms/fcad205.
Issa N, Nunn K, Wu S, Haider H, Tao J
Epilepsia. 2023; 64(3):539-552.
PMID: 36617338
PMC: 10015501.
DOI: 10.1111/epi.17500.
Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex.
Hagemann A, Wilting J, Samimizad B, Mormann F, Priesemann V
PLoS Comput Biol. 2021; 17(3):e1008773.
PMID: 33684101
PMC: 7971851.
DOI: 10.1371/journal.pcbi.1008773.
Differential effects of propofol and ketamine on critical brain dynamics.
Varley T, Sporns O, Puce A, Beggs J
PLoS Comput Biol. 2020; 16(12):e1008418.
PMID: 33347455
PMC: 7785236.
DOI: 10.1371/journal.pcbi.1008418.
Controversies on the network theory of epilepsy: Debates held during the ICTALS 2019 conference.
Zaveri H, Schelter B, Schevon C, Jiruska P, Jefferys J, Worrell G
Seizure. 2020; 78:78-85.
PMID: 32272333
PMC: 7952007.
DOI: 10.1016/j.seizure.2020.03.010.
Precursors of seizures due to specific spatial-temporal modifications of evolving large-scale epileptic brain networks.
Rings T, von Wrede R, Lehnertz K
Sci Rep. 2019; 9(1):10623.
PMID: 31337840
PMC: 6650408.
DOI: 10.1038/s41598-019-47092-w.
Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis.
Palaniyappan L
J Psychiatry Neurosci. 2019; 44(6):367-383.
PMID: 31245961
PMC: 6821513.
DOI: 10.1503/jpn.180038.
Seizure pathways: A model-based investigation.
Karoly P, Kuhlmann L, Soudry D, Grayden D, Cook M, Freestone D
PLoS Comput Biol. 2018; 14(10):e1006403.
PMID: 30307937
PMC: 6199000.
DOI: 10.1371/journal.pcbi.1006403.
Self-organized criticality as a fundamental property of neural systems.
Hesse J, Gross T
Front Syst Neurosci. 2014; 8:166.
PMID: 25294989
PMC: 4171833.
DOI: 10.3389/fnsys.2014.00166.
Spike avalanches in vivo suggest a driven, slightly subcritical brain state.
Priesemann V, Wibral M, Valderrama M, Propper R, Le Van Quyen M, Geisel T
Front Syst Neurosci. 2014; 8:108.
PMID: 25009473
PMC: 4068003.
DOI: 10.3389/fnsys.2014.00108.
Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans.
Priesemann V, Valderrama M, Wibral M, Le Van Quyen M
PLoS Comput Biol. 2013; 9(3):e1002985.
PMID: 23555220
PMC: 3605058.
DOI: 10.1371/journal.pcbi.1002985.
Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial.
Bodner M, Turner R, Schwacke J, Bowers C, Norment C
PLoS One. 2012; 7(10):e45303.
PMID: 23071510
PMC: 3469625.
DOI: 10.1371/journal.pone.0045303.
Prion-like mechanisms in epileptogenesis.
Orzi F, Casolla B, Rocchi R, Fornai F
Neurol Sci. 2012; 34(6):1035-8.
PMID: 22777569
DOI: 10.1007/s10072-012-1148-0.
Being critical of criticality in the brain.
Beggs J, Timme N
Front Physiol. 2012; 3:163.
PMID: 22701101
PMC: 3369250.
DOI: 10.3389/fphys.2012.00163.
Failure of adaptive self-organized criticality during epileptic seizure attacks.
Meisel C, Storch A, Hallmeyer-Elgner S, Bullmore E, Gross T
PLoS Comput Biol. 2012; 8(1):e1002312.
PMID: 22241971
PMC: 3252275.
DOI: 10.1371/journal.pcbi.1002312.
A few strong connections: optimizing information retention in neuronal avalanches.
Chen W, Hobbs J, Tang A, Beggs J
BMC Neurosci. 2010; 11:3.
PMID: 20053290
PMC: 2824798.
DOI: 10.1186/1471-2202-11-3.
Advances in the application of technology to epilepsy: the CIMIT/NIO Epilepsy Innovation Summit.
Schachter S, Guttag J, Schiff S, Schomer D
Epilepsy Behav. 2009; 16(1):3-46.
PMID: 19780225
PMC: 8118381.
DOI: 10.1016/j.yebeh.2009.06.028.