» Articles » PMID: 18570278

Decreased FKBP12.6 Expression and Enhanced Endothelin Receptor Signaling Associated with Arrhymogenesis in Myocardial Infarction Rats

Overview
Journal Phytother Res
Publisher Wiley
Date 2008 Jun 24
PMID 18570278
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

An increased propensity towards cardiac arrhythmias and aggravated heart function is observed in myocardial infarction (MI), the development of which is associated with the calcium handling system in the myocardium. It was hypothesized that the abnormal changes in the MI model may be a consequence of the abnormal expression and function of the RyR2-FKBP12.6 channel complex and that these abnormalities may be related to an over-activated endothelin (ET) system. Salvianolic acid B is expected to suppress life-threatening arrhythmias and to restore the abnormality of the RyR2-FKBP12.6 complex in rats. MI was produced by ligating the coronary artery for 4 weeks. Salvianolic acid B (100 mg/kg/day, p.o. for 4 weeks) was administered to rats 0.5 h before surgery. Measurements of cardiac arrhythmias, cardiac function, calcium transient, cardiac calcium release channel handling proteins and the endothelin system were conducted. The aggravated arrhythmia and compromised cardiac function in MI rats was accompanied by elevated diastolic Ca(2+) levels in the cytosol and a significant down-regulation of expression of RyR2-FKBP12.6. These were closely linked with an over-activated ET pathway in the myocardium. After a 4-week treatment with salvianolic acid B, all abnormalities were reversed significantly. Salvianolic acid B was capable of normalizing FKBP12.6 expression levels and decreasing the propensity towards arrhythmias by attenuating the up-regulated ET pathway.

Citing Articles

Dexmedetomidine protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced intracellular calcium overload and apoptosis through regulating FKBP12.6/RyR2 signaling.

Yuan M, Meng X, Ma J, Liu H, Song S, Chen Q Drug Des Devel Ther. 2019; 13:3137-3149.

PMID: 31564830 PMC: 6730549. DOI: 10.2147/DDDT.S219533.