» Articles » PMID: 18562657

Meiotic Recombination at the Ends of Chromosomes in Saccharomyces Cerevisiae

Overview
Journal Genetics
Specialty Genetics
Date 2008 Jun 20
PMID 18562657
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Meiotic reciprocal recombination (crossing over) was examined in the outermost 60-80 kb of almost all Saccharomyces cerevisiae chromosomes. These sequences included both repetitive gene-poor subtelomeric heterochromatin-like regions and their adjacent unique gene-rich euchromatin-like regions. Subtelomeric sequences underwent very little crossing over, exhibiting approximately two- to threefold fewer crossovers per kilobase of DNA than the genomic average. Surprisingly, the adjacent euchromatic regions underwent crossing over at twice the average genomic rate and contained at least nine new recombination "hot spots." These results prompted an analysis of existing genetic mapping data, which showed that meiotic reciprocal recombination rates were on average greater near chromosome ends exclusive of the subtelomeres. Thus, the distribution of crossovers in S. cerevisiae appears to resemble that found in several higher eukaryotes where the outermost chromosomal regions show increased crossing over.

Citing Articles

SHIP identifies genomic safe harbors in eukaryotic organisms using genomic general feature annotation.

Leitao M, Cabral L, Piva L, Queiroz P, Gomes T, de Andrade R Sci Rep. 2025; 15(1):7193.

PMID: 40021804 PMC: 11871141. DOI: 10.1038/s41598-025-91249-9.


Structural characterization of a polymorphic repeat at the schizophrenia locus.

Moya R, Wang X, Tsien R, Maurano M medRxiv. 2024; .

PMID: 38798557 PMC: 11118589. DOI: 10.1101/2024.03.05.24303780.


Heterochromatin in plant meiosis.

Wang C, Chen Z, Copenhaver G, Wang Y Nucleus. 2024; 15(1):2328719.

PMID: 38488152 PMC: 10950279. DOI: 10.1080/19491034.2024.2328719.


The fine-scale recombination rate variation and associations with genomic features in a butterfly.

Palahi I Torres A, Hook L, Nasvall K, Shipilina D, Wiklund C, Vila R Genome Res. 2023; 33(5):810-823.

PMID: 37308293 PMC: 10317125. DOI: 10.1101/gr.277414.122.


Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens.

Mixao V, Carlos Nunez-Rodriguez J, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T BMC Biol. 2023; 21(1):105.

PMID: 37170256 PMC: 10173528. DOI: 10.1186/s12915-023-01608-z.


References
1.
Baudat F, Nicolas A . Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci U S A. 1997; 94(10):5213-8. PMC: 24658. DOI: 10.1073/pnas.94.10.5213. View

2.
Klein S, Zenvirth D, Dror V, Barton A, Kaback D, Simchen G . Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma. 1996; 105(5):276-84. DOI: 10.1007/BF02524645. View

3.
Fan Q, Xu F, Petes T . Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol Cell Biol. 1995; 15(3):1679-88. PMC: 230392. DOI: 10.1128/MCB.15.3.1679. View

4.
Blitzblau H, Bell G, Rodriguez J, Bell S, Hochwagen A . Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. Curr Biol. 2007; 17(23):2003-12. DOI: 10.1016/j.cub.2007.10.066. View

5.
Riles L, Dutchik J, Baktha A, McCauley B, Thayer E, Leckie M . Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics. 1993; 134(1):81-150. PMC: 1205446. DOI: 10.1093/genetics/134.1.81. View