Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T
Sci Adv. 2025; 11(3):eadp8494.
PMID: 39813331
PMC: 11734720.
DOI: 10.1126/sciadv.adp8494.
Okunomiya T, Watanabe D, Banno H, Kondo T, Imamura K, Takahashi R
J Neurosci. 2024; 45(4.
PMID: 39622644
PMC: 11756628.
DOI: 10.1523/JNEUROSCI.0457-24.2024.
Cai H, Dong J, Wang L, Sullivan B, Sun L, Chang L
Res Sq. 2024; .
PMID: 38978598
PMC: 11230471.
DOI: 10.21203/rs.3.rs-4468830/v1.
Ochandarena N, Niehaus J, Tassou A, Scherrer G
Neuropharmacology. 2023; 238:109597.
PMID: 37271281
PMC: 10494323.
DOI: 10.1016/j.neuropharm.2023.109597.
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A
Brain Sci. 2023; 13(5).
PMID: 37239287
PMC: 10216078.
DOI: 10.3390/brainsci13050815.
The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia.
Lubejko S, Graham R, Livrizzi G, Schaefer R, Banghart M, Creed M
Front Syst Neurosci. 2023; 16:1044686.
PMID: 36591324
PMC: 9794630.
DOI: 10.3389/fnsys.2022.1044686.
Diels-Alder Adducts of Morphinan-6,8-Dienes and Their Transformations.
Marton J, Fekete A, Cumming P, Hosztafi S, Mikecz P, Henriksen G
Molecules. 2022; 27(9).
PMID: 35566212
PMC: 9102320.
DOI: 10.3390/molecules27092863.
The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning.
Singh U, Iyengar S
Front Physiol. 2022; 13:823152.
PMID: 35273519
PMC: 8902293.
DOI: 10.3389/fphys.2022.823152.
Knock-In Mouse Models to Investigate the Functions of Opioid Receptors .
Degrandmaison J, Rochon-Hache S, Parent J, Gendron L
Front Cell Neurosci. 2022; 16:807549.
PMID: 35173584
PMC: 8841419.
DOI: 10.3389/fncel.2022.807549.
From Progenitors to Progeny: Shaping Striatal Circuit Development and Function.
Knowles R, Dehorter N, Ellender T
J Neurosci. 2021; 41(46):9483-9502.
PMID: 34789560
PMC: 8612473.
DOI: 10.1523/JNEUROSCI.0620-21.2021.
Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice.
Huang D, Grady F, Peltekian L, Laing J, Geerling J
J Comp Neurol. 2021; 529(11):2911-2957.
PMID: 33715169
PMC: 8165036.
DOI: 10.1002/cne.25136.
Aversive Stress Reduces Mu Opioid Receptor Expression in the Intercalated Nuclei of the Rat Amygdala.
Gouty S, Silveira J, Cote T, Cox B
Cell Mol Neurobiol. 2021; 41(5):1119-1129.
PMID: 33400082
PMC: 11448683.
DOI: 10.1007/s10571-020-01026-7.
Analgesic effect of ropivacaine with fentanyl in comparison with ropivacaine alone for continuous femoral nerve block after knee replacement arthroplasty: a prospective, randomized, double-blinded study.
Kim G, Lee J, Kim G, Lee S, Son S, Kim B
Anesth Pain Med (Seoul). 2020; 15(2):209-216.
PMID: 33329816
PMC: 7713827.
DOI: 10.17085/apm.2020.15.2.209.
Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal Spiny Neurons.
Prager E, Dorman D, Hobel Z, Malgady J, Blackwell K, Plotkin J
Neuron. 2020; 108(6):1091-1102.e5.
PMID: 33080228
PMC: 7769890.
DOI: 10.1016/j.neuron.2020.09.028.
The non-receptor tyrosine kinase Pyk2 modulates acute locomotor effects of cocaine in D1 receptor-expressing neurons of the nucleus accumbens.
de Pins B, Montalban E, Vanhoutte P, Giralt A, Girault J
Sci Rep. 2020; 10(1):6619.
PMID: 32313025
PMC: 7170924.
DOI: 10.1038/s41598-020-63426-5.
The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal.
Ross J, Van Bockstaele E
Eur J Neurosci. 2020; 52(1):2429-2465.
PMID: 32125035
PMC: 8351794.
DOI: 10.1111/ejn.14714.
Comparison of the Analgesic Effect of Ropivacaine with Fentanyl and Ropivacaine Alone in Continuous Epidural Infusion for Acute Herpes Zoster Management: A Retrospective Study.
Kang H, Lee C, Choi S, Lee M, Lee Y, Park J
Medicina (Kaunas). 2020; 56(1).
PMID: 31936282
PMC: 7022602.
DOI: 10.3390/medicina56010022.
Sucrose intake lowers μ-opioid and dopamine D2/3 receptor availability in porcine brain.
Winterdahl M, Noer O, Orlowski D, Schacht A, Jakobsen S, Alstrup A
Sci Rep. 2019; 9(1):16918.
PMID: 31729425
PMC: 6858372.
DOI: 10.1038/s41598-019-53430-9.
Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons.
McGregor M, McKinsey G, Girasole A, Bair-Marshall C, Rubenstein J, Nelson A
Cell Rep. 2019; 29(6):1419-1428.e5.
PMID: 31693884
PMC: 6866662.
DOI: 10.1016/j.celrep.2019.09.076.
Compartmental function and modulation of the striatum.
Prager E, Plotkin J
J Neurosci Res. 2019; 97(12):1503-1514.
PMID: 31489687
PMC: 6801090.
DOI: 10.1002/jnr.24522.