» Articles » PMID: 18562549

Superior Colliculus Control of Vibrissa Movements

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 2008 Jun 20
PMID 18562549
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

This study tested the role of the superior colliculus in generating movements of the mystacial vibrissae--whisking. First, we compared the kinematics of whisking generated by the superior colliculus with those generated by the motor cortex. We found that in anesthetized rats, microstimulation of the colliculus evoked a sustained vibrissa protraction, whereas stimulation of motor cortex produced rhythmic protractions. Movements generated by the superior colliculus are independent of motor cortex and can be evoked at lower thresholds and shorter latencies than those generated by the motor cortex. Next we tested the hypothesis that the colliculus is acting as a simple reflex loop with the neurons that drive vibrissa movement receiving sensory input evoked by vibrissa contacts. We found that most tecto-facial neurons do not receive sensory input. Not only did these neurons not spike in response to sensory stimulation, but field potential analysis revealed that subthreshold sensory inputs do not overlap spatially with tecto-facial neurons. Together these findings suggest that the superior colliculus plays a pivotal role in vibrissa movement--regulating vibrissa set point and whisk amplitude--but does not function as a simple reflex loop. With the motor cortex controlling the whisking frequency, the superior colliculus control of set point and amplitude would account for the main parameters of voluntary whisking.

Citing Articles

Where Top-Down Meets Bottom-Up: Cell-Type Specific Connectivity Map of the Whisker System.

Rault N, Bergmans T, Delfstra N, Kleijnen B, Zeldenrust F, Celikel T Neuroinformatics. 2024; 22(3):251-268.

PMID: 38767789 PMC: 11329691. DOI: 10.1007/s12021-024-09658-6.


Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior.

Yonk A, Linares-Garcia I, Pasternak L, Juliani S, Gradwell M, George A bioRxiv. 2024; .

PMID: 38585753 PMC: 10996534. DOI: 10.1101/2024.03.21.586152.


Pathways from the Superior Colliculus to the Basal Ganglia.

Melleu F, Canteras N Curr Neuropharmacol. 2023; 22(9):1431-1453.

PMID: 37702174 PMC: 11097988. DOI: 10.2174/1570159X21666230911102118.


MAM-2201 acute administration impairs motor, sensorimotor, prepulse inhibition, and memory functions in mice: a comparison with its analogue AM-2201.

Corli G, Tirri M, Bilel S, Arfe R, Coccini T, Roda E Psychopharmacology (Berl). 2023; 240(7):1435-1452.

PMID: 37233813 PMC: 10272271. DOI: 10.1007/s00213-023-06378-8.


Monosynaptic trans-collicular pathways link mouse whisker circuits to integrate somatosensory and motor cortical signals.

Martin-Cortecero J, Isaias-Camacho E, Boztepe B, Ziegler K, Mease R, Groh A PLoS Biol. 2023; 21(5):e3002126.

PMID: 37205722 PMC: 10234540. DOI: 10.1371/journal.pbio.3002126.


References
1.
Moschovakis A . The superior colliculus and eye movement control. Curr Opin Neurobiol. 1996; 6(6):811-6. DOI: 10.1016/s0959-4388(96)80032-8. View

2.
SCHILLER P, STRYKER M . Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1972; 35(6):915-24. DOI: 10.1152/jn.1972.35.6.915. View

3.
Cramer N, Li Y, Keller A . The whisking rhythm generator: a novel mammalian network for the generation of movement. J Neurophysiol. 2007; 97(3):2148-58. PMC: 1821005. DOI: 10.1152/jn.01187.2006. View

4.
Takemoto I, Sasa M, Takaori S . Role of the locus coeruleus in transmission onto anterior colliculus neurons. Brain Res. 1978; 158(2):269-78. DOI: 10.1016/0006-8993(78)90674-1. View

5.
Dean P, Redgrave P, Sahibzada N, Tsuji K . Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience. 1986; 19(2):367-80. DOI: 10.1016/0306-4522(86)90267-8. View