» Articles » PMID: 18558722

Phosphorylation Within an Autoinhibitory Domain in Endothelial Nitric Oxide Synthase Reduces the Ca(2+) Concentrations Required for Calmodulin to Bind and Activate the Enzyme

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2008 Jun 19
PMID 18558722
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.

Citing Articles

Promotion of nitric oxide production: mechanisms, strategies, and possibilities.

Gonzalez M, Clayton S, Wauson E, Christian D, Tran Q Front Physiol. 2025; 16:1545044.

PMID: 39917079 PMC: 11799299. DOI: 10.3389/fphys.2025.1545044.


Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System.

Tran Q Front Endocrinol (Lausanne). 2020; 11:568203.

PMID: 33133016 PMC: 7550652. DOI: 10.3389/fendo.2020.568203.


Nitric oxide synthase enzymology in the 20 years after the Nobel Prize.

Stuehr D, Haque M Br J Pharmacol. 2018; 176(2):177-188.

PMID: 30402946 PMC: 6295403. DOI: 10.1111/bph.14533.


Exploring the conformations of nitric oxide synthase with fluorescence.

Arnett D, Bailey S, Johnson C Front Biosci (Landmark Ed). 2018; 23(11):2133-2145.

PMID: 29772550 PMC: 6492560. DOI: 10.2741/4694.


Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na1.2.

Hovey L, Fowler C, Mahling R, Lin Z, Miller M, Marx D Biophys Chem. 2017; 224:1-19.

PMID: 28343066 PMC: 5503752. DOI: 10.1016/j.bpc.2017.02.006.


References
1.
Matsubara M, Hayashi N, Jing T, Titani K . Regulation of endothelial nitric oxide synthase by protein kinase C. J Biochem. 2003; 133(6):773-81. DOI: 10.1093/jb/mvg099. View

2.
Michell B, Chen Zp , Tiganis T, Stapleton D, Katsis F, Power D . Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001; 276(21):17625-8. DOI: 10.1074/jbc.C100122200. View

3.
Kou R, Greif D, Michel T . Dephosphorylation of endothelial nitric-oxide synthase by vascular endothelial growth factor. Implications for the vascular responses to cyclosporin A. J Biol Chem. 2002; 277(33):29669-73. DOI: 10.1074/jbc.M204519200. View

4.
Martasek P, Miller R, Roman L, Shea T, Masters B . Assay of isoforms of Escherichia coli-expressed nitric oxide synthase. Methods Enzymol. 1999; 301:70-8. DOI: 10.1016/s0076-6879(99)01070-8. View

5.
Aoyagi M, Arvai A, Tainer J, Getzoff E . Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J. 2003; 22(4):766-75. PMC: 145438. DOI: 10.1093/emboj/cdg078. View