» Articles » PMID: 18506104

Mechanisms Altering Airway Smooth Muscle Cell Ca+ Homeostasis in Two Asthma Models

Overview
Journal Respiration
Publisher Karger
Specialty Pulmonary Medicine
Date 2008 May 29
PMID 18506104
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Asthma is characterized by airway remodeling, altered mucus production and airway smooth muscle cell (ASMC) contraction causing extensive airway narrowing. In particular, alterations of ASMC contractility seem to be of crucial importance. The elevation of the cytoplasmic Ca(2+) concentration is a key event leading to ASMC contraction and changes in the agonist-induced Ca(2+) increase in ASMC have been reported in asthma.

Objective: The aim of this study was to investigate mechanisms underlying these changes.

Methods: Murine tracheal smooth muscle cells (MTSMC) from T-bet KO mice and human bronchial smooth muscle cells (HBSMC) incubated with IL-13 and IL-4 served as asthma models. Acetylcholine-induced changes in the cytoplasmic Ca(2+) concentration were recorded using fluorescence microscopy and the expression of Ca(2+) homeostasis regulating proteins was investigated with Western blot analysis.

Results: Acetylcholine-induced Ca(2+) transients were elevated in both asthma models. This correlated with an increased Ca(2+) content of the sarcoplasmic reticulum (SR). In MTSMC from T-bet KO mice, the expression of the SR Ca(2+) buffers calreticulin and calsequestrin was higher compared to wild-type mice. In HBSMC incubated with IL-13 or IL-4, the expression of ryanodine receptors, inositol-3-phosphate receptors and sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases 2 was increased compared to HBSMC without incubation with interleukins. The enlarged acetylcholine-induced Ca(2+) transients could be reversed by blocking inositol-3-phosphate receptors.

Conclusions: We conclude that in the murine asthma model the SR Ca(2+) buffer capacity is increased, while in the human asthma model the expression of SR Ca(2+) channels is altered. The investigation of the Ca(2+) homeostasis of ASMC has the potential to provide new therapeutical options in asthma.

Citing Articles

Bis-Quinolinium Cyclophane Blockers of SK Potassium Channels Are Antagonists of M3 Muscarinic Acetylcholine Receptors.

Bugay V, Wallace D, Wang B, Salinas I, Chapparo A, Smith H Front Pharmacol. 2020; 11:552211.

PMID: 33041794 PMC: 7525093. DOI: 10.3389/fphar.2020.552211.


Contribution of the OBSCN nonsynonymous variants to aspirin exacerbated respiratory disease susceptibility in Korean population.

Kim J, Park B, Pasaje C, Kim Y, Bae J, Park J DNA Cell Biol. 2012; 31(6):1001-9.

PMID: 22251166 PMC: 3378958. DOI: 10.1089/dna.2011.1436.


Anti-cholinergic effect of singulair on isolated rat's tracheal smooth muscle.

Cheng L, Kao C, Wang C, Chu Y, Wang J, Wang H Eur Arch Otorhinolaryngol. 2011; 269(8):1923-7.

PMID: 22203119 DOI: 10.1007/s00405-011-1880-8.


Exploring lung physiology in health and disease with lung slices.

Sanderson M Pulm Pharmacol Ther. 2011; 24(5):452-65.

PMID: 21600999 PMC: 3168687. DOI: 10.1016/j.pupt.2011.05.001.


Regulation of airway contractility by plasminogen activators through N-methyl-D-aspartate receptor-1.

Nassar T, Yarovoi S, Abu Fanne R, Akkawi S, Jammal M, Allen T Am J Respir Cell Mol Biol. 2010; 43(6):703-11.

PMID: 20097831 PMC: 2993090. DOI: 10.1165/rcmb.2009-0257OC.