» Articles » PMID: 18499695

EM-random Forest and New Measures of Variable Importance for Multi-locus Quantitative Trait Linkage Analysis

Overview
Journal Bioinformatics
Specialty Biology
Date 2008 May 24
PMID 18499695
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: We developed an EM-random forest (EMRF) for Haseman-Elston quantitative trait linkage analysis that accounts for marker ambiguity and weighs each sib-pair according to the posterior identical by descent (IBD) distribution. The usual random forest (RF) variable importance (VI) index used to rank markers for variable selection is not optimal when applied to linkage data because of correlation between markers. We define new VI indices that borrow information from linked markers using the correlation structure inherent in IBD linkage data.

Results: Using simulations, we find that the new VI indices in EMRF performed better than the original RF VI index and performed similarly or better than EM-Haseman-Elston regression LOD score for various genetic models. Moreover, tree size and markers subset size evaluated at each node are important considerations in RFs.

Availability: The source code for EMRF written in C is available at www.infornomics.utoronto.ca/downloads/EMRF.

Citing Articles

Application of Artificial Intelligence in Screening for Adverse Perinatal Outcomes-A Systematic Review.

Feduniw S, Golik D, Kajdy A, Pruc M, Modzelewski J, Sys D Healthcare (Basel). 2022; 10(11).

PMID: 36360505 PMC: 9690973. DOI: 10.3390/healthcare10112164.


An enhanced machine learning tool for cis-eQTL mapping with regularization and confounder adjustments.

Yan K, Zhao H, Wu J, Pang H Genet Epidemiol. 2020; 44(8):798-810.

PMID: 32700329 PMC: 7875251. DOI: 10.1002/gepi.22341.


Application of data mining for predicting hemodynamics instability during pheochromocytoma surgery.

Zhao Y, Fang L, Cui L, Bai S BMC Med Inform Decis Mak. 2020; 20(1):165.

PMID: 32690077 PMC: 7370474. DOI: 10.1186/s12911-020-01180-4.


An experimental study of the intrinsic stability of random forest variable importance measures.

Wang H, Yang F, Luo Z BMC Bioinformatics. 2016; 17:60.

PMID: 26842629 PMC: 4739337. DOI: 10.1186/s12859-016-0900-5.


A novel targeted learning method for quantitative trait loci mapping.

Wang H, Zhang Z, Rose S, van der Laan M Genetics. 2014; 198(4):1369-76.

PMID: 25258376 PMC: 4256757. DOI: 10.1534/genetics.114.168955.


References
1.
Wu L, Sun L, Bull S . Locus-specific heritability estimation via the bootstrap in linkage scans for quantitative trait loci. Hum Hered. 2006; 62(2):84-96. DOI: 10.1159/000096096. View

2.
Izmirlian G . Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann N Y Acad Sci. 2004; 1020:154-74. DOI: 10.1196/annals.1310.015. View

3.
Haseman J, Elston R . The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972; 2(1):3-19. DOI: 10.1007/BF01066731. View

4.
Elston R, Stewart J . A general model for the genetic analysis of pedigree data. Hum Hered. 1971; 21(6):523-42. DOI: 10.1159/000152448. View

5.
Williams J, Blangero J . Power of variance component linkage analysis to detect quantitative trait loci. Ann Hum Genet. 2001; 63(Pt 6):545-63. DOI: 10.1017/S0003480099007848. View