» Articles » PMID: 18499037

Influence of Charge State and Sodium Cationization on the Electron Detachment Dissociation and Infrared Multiphoton Dissociation of Glycosaminoglycan Oligosaccharides

Overview
Specialty Chemistry
Date 2008 May 24
PMID 18499037
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a useful method for tandem mass spectrometry analysis of sulfated glycosaminoglycans (GAGs). EDD produces abundant glycosidic and cross-ring fragmentations that are useful for localizing sites of sulfation in GAG oligosaccharides. Although EDD fragmentation can be used to characterize GAGs in a single tandem mass spectrometry experiment, SO3 loss accompanies many peaks and complicates the resulting mass spectra. In this work we demonstrate the ability to significantly decrease SO3 loss by selection of the proper ionized state of GAG precursor ions. When the degree of ionization is greater than the number of sulfate groups in an oligosaccharide, a significant reduction in SO3 loss is observed in the EDD mass spectra. These data suggested that SO3 loss is reduced when an electron is detached from carboxylate groups instead of sulfate. Electron detachment occurs preferentially from carboxylate versus sulfate for thermodynamic reasons, provided that carboxylate is in its ionized state. Ionization of the carboxylate group is achieved by selecting the appropriate precursor ion charge state, or by the replacement of protons with sodium cations. Increasing the ionization state by sodium cation addition decreases, but does not eliminate, SO3 loss from infrared multiphoton dissociation of the same GAG precursor ions.

Citing Articles

Pathophysiology of Congestion in Heart Failure: A Contemporary Review.

Kumric M, Kurir T, Bozic J, Slujo A, Glavas D, Miric D Card Fail Rev. 2024; 10:e13.

PMID: 39450149 PMC: 11499970. DOI: 10.15420/cfr.2024.07.


The Congestion "Pandemic" in Acute Heart Failure Patients.

Mocan D, Lala R, Puschita M, Pilat L, Darabantiu D, Pop-Moldovan A Biomedicines. 2024; 12(5).

PMID: 38790913 PMC: 11117769. DOI: 10.3390/biomedicines12050951.


Resolving Heparan Sulfate Oligosaccharide Positional Isomers Using Hydrophilic Interaction Liquid Chromatography-Cyclic Ion Mobility Mass Spectrometry.

Cavallero G, Zaia J Anal Chem. 2022; 94(5):2366-2374.

PMID: 35090117 PMC: 8943687. DOI: 10.1021/acs.analchem.1c03543.


Mass Spectrometry-Based Techniques to Elucidate the Sugar Code.

Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K Chem Rev. 2021; 122(8):7840-7908.

PMID: 34491038 PMC: 9052437. DOI: 10.1021/acs.chemrev.1c00380.


Investigation of the Experimental Parameters of Ultraviolet Photodissociation for the Structural Characterization of Chondroitin Sulfate Glycosaminoglycan Isomers.

Pepi L, Leach 3rd F, Klein D, Brodbelt J, Jonathan Amster I J Am Soc Mass Spectrom. 2021; 32(7):1759-1770.

PMID: 34096288 PMC: 8377745. DOI: 10.1021/jasms.1c00119.


References
1.
Linhardt R, Toida T . Role of glycosaminoglycans in cellular communication. Acc Chem Res. 2004; 37(7):431-8. DOI: 10.1021/ar030138x. View

2.
Gotte M . Syndecans in inflammation. FASEB J. 2003; 17(6):575-91. DOI: 10.1096/fj.02-0739rev. View

3.
Dai Y, Whittal R, Bridges C, Isogai Y, Hindsgaul O, Li L . Matrix-assisted laser desorption ionization mass spectrometry for the analysis of monosulfated oligosaccharides. Carbohydr Res. 1997; 304(1):1-9. DOI: 10.1016/s0008-6215(97)00195-x. View

4.
Miller M, Costello C, Malmstrom A, Zaia J . A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology. 2006; 16(6):502-13. PMC: 2577607. DOI: 10.1093/glycob/cwj093. View

5.
Zaia J, Li X, Chan S, Costello C . Tandem mass spectrometric strategies for determination of sulfation positions and uronic acid epimerization in chondroitin sulfate oligosaccharides. J Am Soc Mass Spectrom. 2003; 14(11):1270-81. DOI: 10.1016/S1044-0305(03)00541-5. View