» Articles » PMID: 18497744

Molecular Mechanism and Structure of Trigger Factor Bound to the Translating Ribosome

Overview
Journal EMBO J
Date 2008 May 24
PMID 18497744
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.

Citing Articles

Dynamic binding of the bacterial chaperone Trigger factor to translating ribosomes in .

Havermark T, Metelev M, Lundin E, Volkov I, Johansson M Proc Natl Acad Sci U S A. 2024; 122(1):e2409536121.

PMID: 39739798 PMC: 11725819. DOI: 10.1073/pnas.2409536121.


Bayesian reweighting of biomolecular structural ensembles using heterogeneous cryo-EM maps with the cryoENsemble method.

Wlodarski T, Streit J, Mitropoulou A, Cabrita L, Vendruscolo M, Christodoulou J Sci Rep. 2024; 14(1):18149.

PMID: 39103467 PMC: 11300795. DOI: 10.1038/s41598-024-68468-7.


Resolving chaperone-assisted protein folding on the ribosome at the peptide level.

Wales T, Pajak A, Roeselova A, Shivakumaraswamy S, Howell S, Kjaer S Nat Struct Mol Biol. 2024; 31(12):1888-1897.

PMID: 38987455 PMC: 11638072. DOI: 10.1038/s41594-024-01355-x.


Thermodynamic profiles for cotranslational trigger factor substrate recognition.

Herling T, Cassaignau A, Wentink A, Peter Q, Kumar P, Kartanas T Sci Adv. 2024; 10(28):eadn4824.

PMID: 38985872 PMC: 11235164. DOI: 10.1126/sciadv.adn4824.


Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone.

Huang C, Lai Y, Chen S, Ho M, Chiang Y, Hsu S Magn Reson (Gott). 2023; 2(1):375-386.

PMID: 37904759 PMC: 10539794. DOI: 10.5194/mr-2-375-2021.


References
1.
Housman D, Gillespie D, Lodish H . Removal of formyl-methionine residue from nascent bacteriophage f2 protein. J Mol Biol. 1972; 65(1):163-6. DOI: 10.1016/0022-2836(72)90498-6. View

2.
Deuerling E, Tomoyasu T, Mogk A, Bukau B . Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature. 1999; 400(6745):693-6. DOI: 10.1038/23301. View

3.
Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath A . Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc Natl Acad Sci U S A. 2005; 102(34):12017-22. PMC: 1183488. DOI: 10.1073/pnas.0505581102. View

4.
Hartl F, Hayer-Hartl M . Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002; 295(5561):1852-8. DOI: 10.1126/science.1068408. View

5.
Stoller G, Tradler T, Rucknagel K, Fischer G . An 11.8 kDa proteolytic fragment of the E. coli trigger factor represents the domain carrying the peptidyl-prolyl cis/trans isomerase activity. FEBS Lett. 1996; 384(2):117-22. DOI: 10.1016/0014-5793(96)00282-7. View