» Articles » PMID: 1846134

Purification and Characterization of Haloalcohol Dehalogenase from Arthrobacter Sp. Strain AD2

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1991 Jan 1
PMID 1846134
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

An enzyme capable of dehalogenating vicinal haloalcohols to their corresponding epoxides was purified from the 3-chloro-1,2-propanediol-utilizing bacterium Arthrobacter sp. strain AD2. The inducible haloalcohol dehalogenase converted 1,3-dichloro-2-propanol, 3-chloro-1,2-propanediol, 1-chloro-2-propanol, and their brominated analogs, 2-bromoethanol, as well as chloroacetone and 1,3-dichloroacetone. The enzyme possessed no activity for epichlorohydrin (3-chloro-1,2-epoxypropane) or 2,3-dichloro-1-propanol. The dehalogenase had a broad pH optimum at about 8.5 and a temperature optimum of 50 degrees C. The enzyme followed Michaelis-Menten kinetics, and the Km values for 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol were 8.5 and 48 mM, respectively. Chloroacetic acid was a competitive inhibitor, with a Ki of 0.50 mM. A subunit molecular mass of 29 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With gel filtration, a molecular mass of 69 kDa was found, indicating that the native protein is a dimer. The amino acid composition and N-terminal amino acid sequence are given.

Citing Articles

Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant spp. to Extreme Antarctic Environments.

Romaniuk K, Golec P, Dziewit L Front Microbiol. 2019; 9:3144.

PMID: 30619210 PMC: 6305408. DOI: 10.3389/fmicb.2018.03144.


Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.

Ang T, Maiangwa J, Bakar Salleh A, Normi Y, Leow T Molecules. 2018; 23(5).

PMID: 29735886 PMC: 6100074. DOI: 10.3390/molecules23051100.


Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter.

Yao Y, Tang H, Su F, Xu P Sci Rep. 2015; 5:8642.

PMID: 25721465 PMC: 4342571. DOI: 10.1038/srep08642.


Expression, characterization, and improvement of a newly cloned halohydrin dehalogenase from Agrobacterium tumefaciens and its application in production of epichlorohydrin.

Liu Z, Gao A, Wang Y, Zheng Y, Shen Y J Ind Microbiol Biotechnol. 2014; 41(7):1145-58.

PMID: 24777710 DOI: 10.1007/s10295-014-1443-2.


Novel dehalogenase mechanism for 2,3-dichloro-1-propanol utilization in Pseudomonas putida strain MC4.

Arif M, Samin G, van Leeuwen J, Oppentocht J, Janssen D Appl Environ Microbiol. 2012; 78(17):6128-36.

PMID: 22752160 PMC: 3416625. DOI: 10.1128/AEM.00760-12.


References
1.
Janssen D, Gerritse J, Brackman J, Kalk C, Jager D, Witholt B . Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur J Biochem. 1988; 171(1-2):67-72. DOI: 10.1111/j.1432-1033.1988.tb13759.x. View

2.
Scholtz R, Wackett L, Egli C, Cook A, Leisinger T . Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J Bacteriol. 1988; 170(12):5698-704. PMC: 211671. DOI: 10.1128/jb.170.12.5698-5704.1988. View

3.
Scholtz R, Leisinger T, Suter F, Cook A . Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J Bacteriol. 1987; 169(11):5016-21. PMC: 213902. DOI: 10.1128/jb.169.11.5016-5021.1987. View

4.
Yokota T, Omori T, Kodama T . Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol. 1987; 169(9):4049-54. PMC: 213707. DOI: 10.1128/jb.169.9.4049-4054.1987. View

5.
Janssen D, Jager D, Witholt B . Degradation of n-haloalkanes and alpha, omega-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70. Appl Environ Microbiol. 1987; 53(3):561-6. PMC: 203706. DOI: 10.1128/aem.53.3.561-566.1987. View