» Articles » PMID: 18458340

Glucose Sensing by MondoA:Mlx Complexes: a Role for Hexokinases and Direct Regulation of Thioredoxin-interacting Protein Expression

Overview
Specialty Science
Date 2008 May 7
PMID 18458340
Citations 156
Authors
Affiliations
Soon will be listed here.
Abstract

Glucose is a fundamental metabolite, yet how cells sense and respond to changes in extracellular glucose concentration is not completely understood. We recently reported that the MondoA:Mlx dimeric transcription factor directly regulates glycolysis. In this article, we consider whether MondoA:Mlx complexes have a broader role in sensing and responding to glucose status. In their latent state, MondoA:Mlx complexes localize to the outer mitochondrial membrane, yet shuttle between the mitochondria and the nucleus. We show that MondoA:Mlx complexes accumulate in the nucleus in response to glucose and 2-deoxyglucose (2-DG). Furthermore, nuclear localization of MondoA:Mlx depends on the enzymatic activity of hexokinases. These enzymes catalyze conversion of glucose to glucose-6-phosphate (G6P), which is the first step in the glycolytic pathway. Together, these findings suggest that MondoA:Mlx monitors intracellular G6P concentration and translocates to the nucleus when levels of this key metabolite increase. Transcriptional profiling experiments demonstrate that MondoA is required for >75% of the 2-DG-induced transcription signature. We identify thioredoxin-interacting protein (TXNIP) as a direct and glucose-regulated MondoA:Mlx transcriptional target. Furthermore, MondoA:Mlx complexes, via their regulation of TXNIP, are potent negative regulators of glucose uptake. These studies suggest a key role for MondoA:Mlx complexes in the adaptive transcriptional response to changes in extracellular glucose concentration and peripheral glucose uptake.

Citing Articles

Sulforaphane acutely activates multiple starvation response pathways.

Plafker K, Georgescu C, Pezant N, Pranay A, Plafker S Front Nutr. 2025; 11:1485466.

PMID: 39867556 PMC: 11758633. DOI: 10.3389/fnut.2024.1485466.


Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in Citrin Deficiency.

Tiwari V, Jin B, Sun O, Lopez Gonzalez E, Chen M, Wu X bioRxiv. 2025; .

PMID: 39763913 PMC: 11703153. DOI: 10.1101/2024.12.27.630525.


MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues.

Freie B, Ibrahim A, Carroll P, Bronson R, Augert A, MacPherson D bioRxiv. 2024; .

PMID: 39386474 PMC: 11463667. DOI: 10.1101/2024.09.21.614255.


The MondoA-dependent TXNIP/GDF15 axis predicts oxaliplatin response in colorectal adenocarcinomas.

Deng J, Pan T, Wang D, Hong Y, Liu Z, Zhou X EMBO Mol Med. 2024; 16(9):2080-2108.

PMID: 39103698 PMC: 11393413. DOI: 10.1038/s44321-024-00105-2.


Systemic Deletion of ARRDC4 Improves Cardiac Reserve and Exercise Capacity in Diabetes.

Nakayama Y, Kobayashi S, Masihuddin A, Abdali S, Seneviratne A, Ishii S Circ Res. 2024; 135(3):416-433.

PMID: 38946541 PMC: 11257811. DOI: 10.1161/CIRCRESAHA.123.323158.


References
1.
Hahn W, Dessain S, Brooks M, King J, Elenbaas B, Sabatini D . Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol. 2002; 22(7):2111-23. PMC: 133688. DOI: 10.1128/MCB.22.7.2111-2123.2002. View

2.
Shamji A, Nghiem P, Schreiber S . Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell. 2003; 12(2):271-80. DOI: 10.1016/j.molcel.2003.08.016. View

3.
Li M, Chang B, Imamura M, Poungvarin N, Chan L . Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes. 2006; 55(5):1179-89. DOI: 10.2337/db05-0822. View

4.
Santangelo G . Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006; 70(1):253-82. PMC: 1393250. DOI: 10.1128/MMBR.70.1.253-282.2006. View

5.
Muoio D . TXNIP links redox circuitry to glucose control. Cell Metab. 2007; 5(6):412-4. DOI: 10.1016/j.cmet.2007.05.011. View