Kass R, Bong H, Olarinre M, Xin Q, Urban K
J Neurophysiol. 2023; 130(3):475-496.
PMID: 37465897
PMC: 10642974.
DOI: 10.1152/jn.00131.2023.
Borra D, Fantozzi S, Bisi M, Magosso E
Sensors (Basel). 2023; 23(7).
PMID: 37050590
PMC: 10099070.
DOI: 10.3390/s23073530.
Stokkermans M, Solis-Escalante T, Cohen M, Weerdesteyn V
Front Neurol. 2023; 14:1124773.
PMID: 36998772
PMC: 10043329.
DOI: 10.3389/fneur.2023.1124773.
Fan D, Wang H, Wang J
Cogn Neurodyn. 2022; 16(4):819-831.
PMID: 35847539
PMC: 9279550.
DOI: 10.1007/s11571-021-09759-x.
Cu H, Lynch L, Huang K, Truccolo W, Nurmikko A
Sci Rep. 2022; 12(1):6776.
PMID: 35474117
PMC: 9042850.
DOI: 10.1038/s41598-022-10871-z.
Sensorineural Hearing Loss Affects Functional Connectivity of the Auditory Cortex, Parahippocampal Gyrus and Inferior Prefrontal Gyrus in Tinnitus Patients.
Chen J, Zhao Y, Zou T, Wen X, Zhou X, Yu Y
Front Neurosci. 2022; 16:816712.
PMID: 35431781
PMC: 9011051.
DOI: 10.3389/fnins.2022.816712.
Predictive Feedback, Early Sensory Representations, and Fast Responses to Predicted Stimuli Depend on NMDA Receptors.
Mohanta S, Afrasiabi M, Casey C, Tanabe S, Redinbaugh M, Kambi N
J Neurosci. 2021; 41(49):10130-10147.
PMID: 34732525
PMC: 8660042.
DOI: 10.1523/JNEUROSCI.1311-21.2021.
State Transitions During Discrimination Learning in the Gerbil Auditory Cortex Analyzed by Network Causality Metrics.
Kozma R, Hu S, Sokolov Y, Wanger T, Schulz A, Woldeit M
Front Syst Neurosci. 2021; 15:641684.
PMID: 33967706
PMC: 8100519.
DOI: 10.3389/fnsys.2021.641684.
Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains.
Casile A, Faghih R, Brown E
PLoS Comput Biol. 2021; 17(1):e1007675.
PMID: 33493162
PMC: 7861554.
DOI: 10.1371/journal.pcbi.1007675.
Overlapping connectivity patterns during semantic processing of abstract and concrete words revealed with multivariate Granger Causality analysis.
Fahimi Hnazaee M, Khachatryan E, Chehrazad S, Kotarcic A, De Letter M, Van Hulle M
Sci Rep. 2020; 10(1):2803.
PMID: 32071356
PMC: 7028761.
DOI: 10.1038/s41598-020-59473-7.
The bottom-up and top-down processing of faces in the human occipitotemporal cortex.
Fan X, Wang F, Shao H, Zhang P, He S
Elife. 2020; 9.
PMID: 31934855
PMC: 7000216.
DOI: 10.7554/eLife.48764.
Electrophysiological Brain Connectivity: Theory and Implementation.
He B, Astolfi L, Valdes-Sosa P, Marinazzo D, Palva S, Benar C
IEEE Trans Biomed Eng. 2019; .
PMID: 31071012
PMC: 6834897.
DOI: 10.1109/TBME.2019.2913928.
Multiplexing of Theta and Alpha Rhythms in the Amygdala-Hippocampal Circuit Supports Pattern Separation of Emotional Information.
Zheng J, Stevenson R, Mander B, Mnatsakanyan L, Hsu F, Vadera S
Neuron. 2019; 102(4):887-898.e5.
PMID: 30979537
PMC: 6605056.
DOI: 10.1016/j.neuron.2019.03.025.
Sad faces increase the heartbeat-associated interoceptive information flow within the salience network: a MEG study.
Kim J, Park H, Kim K, Shin D, Lim S, Kwon H
Sci Rep. 2019; 9(1):430.
PMID: 30674995
PMC: 6344475.
DOI: 10.1038/s41598-018-36498-7.
Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study.
Recasens M, Gross J, Uhlhaas P
Sci Rep. 2018; 8(1):14007.
PMID: 30228366
PMC: 6143554.
DOI: 10.1038/s41598-018-32385-3.
The frequency of alpha oscillations: Task-dependent modulation and its functional significance.
Samuel I, Wang C, Hu Z, Ding M
Neuroimage. 2018; 183:897-906.
PMID: 30176369
PMC: 6197916.
DOI: 10.1016/j.neuroimage.2018.08.063.
The Effect of Common Signals on Power, Coherence and Granger Causality: Theoretical Review, Simulations, and Empirical Analysis of Fruit Fly LFPs Data.
Cohen D, Tsuchiya N
Front Syst Neurosci. 2018; 12:30.
PMID: 30090060
PMC: 6068358.
DOI: 10.3389/fnsys.2018.00030.
Detecting multivariate cross-correlation between brain regions.
Rodu J, Klein N, Brincat S, Miller E, Kass R
J Neurophysiol. 2018; 120(4):1962-1972.
PMID: 29947591
PMC: 6230799.
DOI: 10.1152/jn.00869.2017.
Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.
Pesaran B, Vinck M, Einevoll G, Sirota A, Fries P, Siegel M
Nat Neurosci. 2018; 21(7):903-919.
PMID: 29942039
PMC: 7386068.
DOI: 10.1038/s41593-018-0171-8.
Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.
Cohen D, van Swinderen B, Tsuchiya N
eNeuro. 2018; 5(1).
PMID: 29541686
PMC: 5846228.
DOI: 10.1523/ENEURO.0329-17.2018.