Korir P, Iudin A, Somasundharam S, Weyand S, Salih O, Hartley M
F1000Res. 2024; 12.
PMID: 38486614
PMC: 10938051.
DOI: 10.12688/f1000research.129720.2.
Schuler R, Czajkowski K, DArcy M, Tangmunarunkit H, Kesselman C
Sci Stat Database Manag. 2023; 2020.
PMID: 37614739
PMC: 10445529.
DOI: 10.1145/3400903.3400908.
Nault R, Cave M, Ludewig G, Moseley H, Pennell K, Zacharewski T
Environ Health Perspect. 2023; 131(6):65001.
PMID: 37352010
PMC: 10289218.
DOI: 10.1289/EHP11484.
Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D
Metabolites. 2022; 12(7).
PMID: 35888710
PMC: 9319858.
DOI: 10.3390/metabo12070584.
Rigano A, Ehmsen S, Ozturk S, Ryan J, Balashov A, Hammer M
Nat Methods. 2021; 18(12):1489-1495.
PMID: 34862503
PMC: 8648560.
DOI: 10.1038/s41592-021-01315-z.
Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model.
Hammer M, Huisman M, Rigano A, Boehm U, Chambers J, Gaudreault N
Nat Methods. 2021; 18(12):1427-1440.
PMID: 34862501
PMC: 9271325.
DOI: 10.1038/s41592-021-01327-9.
Data Management in Computational Systems Biology: Exploring Standards, Tools, Databases, and Packaging Best Practices.
Stanford N, Scharm M, Dobson P, Golebiewski M, Hucka M, Kothamachu V
Methods Mol Biol. 2019; 2049:285-314.
PMID: 31602618
DOI: 10.1007/978-1-4939-9736-7_17.
Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations.
Karcher S, Willighagen E, Rumble J, Ehrhart F, Evelo C, Fritts M
NanoImpact. 2018; 9:85-101.
PMID: 30246165
PMC: 6145474.
DOI: 10.1016/j.impact.2017.11.002.
Supporting evidence-based analysis for modified risk tobacco products through a toxicology data-sharing infrastructure.
Boue S, Exner T, Ghosh S, Belcastro V, Dokler J, Page D
F1000Res. 2017; 6:12.
PMID: 29123642
PMC: 5657032.
DOI: 10.12688/f1000research.10493.2.
mzML2ISA & nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data.
Larralde M, Lawson T, Weber R, Moreno P, Haug K, Rocca-Serra P
Bioinformatics. 2017; 33(16):2598-2600.
PMID: 28402395
PMC: 5870861.
DOI: 10.1093/bioinformatics/btx169.
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Eghbalnia H, Romero P, Westler W, Baskaran K, Ulrich E, Markley J
Curr Opin Biotechnol. 2016; 43:56-61.
PMID: 27643760
PMC: 5305618.
DOI: 10.1016/j.copbio.2016.08.005.
SBtab: a flexible table format for data exchange in systems biology.
Lubitz T, Hahn J, Bergmann F, Noor E, Klipp E, Liebermeister W
Bioinformatics. 2016; 32(16):2559-61.
PMID: 27153616
PMC: 4978929.
DOI: 10.1093/bioinformatics/btw179.
How should the completeness and quality of curated nanomaterial data be evaluated?.
Marchese Robinson R, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C
Nanoscale. 2016; 8(19):9919-43.
PMID: 27143028
PMC: 4899944.
DOI: 10.1039/c5nr08944a.
The Ontology for Biomedical Investigations.
Bandrowski A, Brinkman R, Brochhausen M, Brush M, Bug B, Chibucos M
PLoS One. 2016; 11(4):e0154556.
PMID: 27128319
PMC: 4851331.
DOI: 10.1371/journal.pone.0154556.
An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology.
Marchese Robinson R, Cronin M, Richarz A, Rallo R
Beilstein J Nanotechnol. 2015; 6:1978-99.
PMID: 26665069
PMC: 4660926.
DOI: 10.3762/bjnano.6.202.
The National NeuroAIDS Tissue Consortium (NNTC) Database: an integrated database for HIV-related studies.
Cserhati M, Pandey S, Beaudoin J, Baccaglini L, Guda C, Fox H
Database (Oxford). 2015; 2015:bav074.
PMID: 26228431
PMC: 4520230.
DOI: 10.1093/database/bav074.
Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses.
Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M
Front Bioeng Biotechnol. 2015; 3:38.
PMID: 25905099
PMC: 4388006.
DOI: 10.3389/fbioe.2015.00038.
Structuring research methods and data with the research object model: genomics workflows as a case study.
Hettne K, Dharuri H, Zhao J, Wolstencroft K, Belhajjame K, Soiland-Reyes S
J Biomed Semantics. 2014; 5(1):41.
PMID: 25276335
PMC: 4177597.
DOI: 10.1186/2041-1480-5-41.
Biomarkers in autism spectrum disorder: the old and the new.
Ruggeri B, Sarkans U, Schumann G, Persico A
Psychopharmacology (Berl). 2013; 231(6):1201-16.
PMID: 24096533
DOI: 10.1007/s00213-013-3290-7.
A novel knowledge representation framework for the statistical validation of quantitative imaging biomarkers.
Buckler A, Paik D, Ouellette M, Danagoulian J, Wernsing G, Suzek B
J Digit Imaging. 2013; 26(4):614-29.
PMID: 23546775
PMC: 3705009.
DOI: 10.1007/s10278-013-9598-3.