» Articles » PMID: 18441027

Starting Structure Dependence of NMR Order Parameters Derived from MD Simulations: Implications for Judging Force-field Quality

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2008 Apr 29
PMID 18441027
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Comparing experimental generalized N-H S(2) order parameters to those calculated from molecular dynamics trajectories is increasingly used to judge force-field quality and completeness of sampling. Herein we demonstrate for the well-investigated system hen egg white lysozyme that different experimental starting structures can lead to significant differences in molecular-dynamics-derived S(2) parameters that can be even larger than S(2) parameter deviations due to different force fields. Caution should thus be taken in general when simulated S(2) parameters are compared to experimental data with the aim of judging force-field quality. We show that adequately sampling flexible regions ( approximately 100 ns) and only calculating S(2) parameters averaged over short time windows proved necessary to obtain consistent results irrespective of the starting structure.

Citing Articles

Uncertainty Quantification in Alchemical Free Energy Methods.

Bhati A, Wan S, Hu Y, Sherborne B, Coveney P J Chem Theory Comput. 2018; 14(6):2867-2880.

PMID: 29678106 PMC: 6095638. DOI: 10.1021/acs.jctc.7b01143.


Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15.

Wang L, McKiernan K, Gomes J, Beauchamp K, Head-Gordon T, Rice J J Phys Chem B. 2017; 121(16):4023-4039.

PMID: 28306259 PMC: 9724927. DOI: 10.1021/acs.jpcb.7b02320.


Characterization of the flexible lip regions in bacteriophage lambda lysozyme using MD simulations.

Smith L, van Gunsteren W, Hansen N Eur Biophys J. 2015; 44(4):235-47.

PMID: 25820531 DOI: 10.1007/s00249-015-1018-9.


Starting-structure dependence of nanosecond timescale intersubstate transitions and reproducibility of MD-derived order parameters.

Zeiske T, Stafford K, Friesner R, Palmer 3rd A Proteins. 2012; 81(3):499-509.

PMID: 23161667 PMC: 3557728. DOI: 10.1002/prot.24209.


Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.

Gotz A, Williamson M, Xu D, Poole D, Le Grand S, Walker R J Chem Theory Comput. 2012; 8(5):1542-1555.

PMID: 22582031 PMC: 3348677. DOI: 10.1021/ct200909j.


References
1.
Case D, Cheatham 3rd T, Darden T, Gohlke H, Luo R, Merz Jr K . The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16):1668-88. PMC: 1989667. DOI: 10.1002/jcc.20290. View

2.
Buck M, Bouguet-Bonnet S, Pastor R, MacKerell Jr A . Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J. 2005; 90(4):L36-8. PMC: 1367299. DOI: 10.1529/biophysj.105.078154. View

3.
Horita D, Zhang W, Smithgall T, Gmeiner W, Byrd R . Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Protein Sci. 2000; 9(1):95-103. PMC: 2144440. DOI: 10.1110/ps.9.1.95. View

4.
Soares T, Daura X, Oostenbrink C, Smith L, van Gunsteren W . Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme. J Biomol NMR. 2005; 30(4):407-22. DOI: 10.1007/s10858-004-5430-1. View

5.
Prompers J, Bruschweiler R . General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc. 2002; 124(16):4522-34. DOI: 10.1021/ja012750u. View