» Articles » PMID: 18425435

Molecular Physiology and Pathophysiology of Lysosomal Membrane Transporters

Overview
Publisher Wiley
Date 2008 Apr 22
PMID 18425435
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In contrast to lysosomal hydrolytic enzymes, the lysosomal membrane remains poorly characterized. In particular, although the genetic study of cystinosis and sialic acid storage disorders led to the identification of two lysosomal transporters for cystine and sialic acids, respectively, ten years ago, most transporters responsible for exporting lysosomal hydrolysis products to the cytosol are still unknown at the molecular level. However, two lines of investigation recently started to fill this gap in the knowledge of lysosomal biology. First, novel proteomic approaches are now able to provide a reliable inventory of lysosomal membrane proteins. On the other hand, a novel functional approach based on intracellular trafficking mechanisms allows direct transport measurement in whole cells by redirecting recombinant lysosomal transporters to the cell surface. After surveying the current state of knowledge in this field, the review focuses on the sialic acid transporter sialin and shows how recent functional data using the above whole-cell approach shed new light on the pathogenesis of sialic acid storage disorders by revealing the existence of a residual transport activity associated with Salla disease.

Citing Articles

Autophagy-lysosome pathway in insulin & glucagon homeostasis.

Wu Y, Wang H, Xu H Front Endocrinol (Lausanne). 2025; 16:1541794.

PMID: 39996055 PMC: 11847700. DOI: 10.3389/fendo.2025.1541794.


Zinc oxide nanoparticles trigger autophagy-mediated cell death through activating lysosomal TRPML1 in normal kidney cells.

Kim B, Kim G, Jeon S, Cho W, Jeon H, Jung J Toxicol Rep. 2023; 10:529-536.

PMID: 37152410 PMC: 10160241. DOI: 10.1016/j.toxrep.2023.04.012.


Disrupted in renal carcinoma 2 (DIRC2/SLC49A4) is an H-driven lysosomal pyridoxine exporter.

Akino S, Yasujima T, Yamashiro T, Yuasa H Life Sci Alliance. 2022; 6(2).

PMID: 36456177 PMC: 9719028. DOI: 10.26508/lsa.202201629.


Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance.

Leray X, Hilton J, Nwangwu K, Becerril A, Mikusevic V, Fitzgerald G Elife. 2022; 11.

PMID: 35670560 PMC: 9242644. DOI: 10.7554/eLife.74136.


Free sialic acid storage disorder: Progress and promise.

Huizing M, Hackbarth M, Adams D, Wasserstein M, Patterson M, Walkley S Neurosci Lett. 2021; 755:135896.

PMID: 33862140 PMC: 8175077. DOI: 10.1016/j.neulet.2021.135896.


References
1.
Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M . Cloning of a lymphatic peptide/histidine transporter. Biochem J. 2001; 356(Pt 1):53-60. PMC: 1221811. DOI: 10.1042/0264-6021:3560053. View

2.
Codogno P, Moore S . Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J Biol Chem. 1999; 274(19):13547-55. DOI: 10.1074/jbc.274.19.13547. View

3.
Siintola E, Topcu M, Aula N, Lohi H, Minassian B, Paterson A . The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet. 2007; 81(1):136-46. PMC: 1950917. DOI: 10.1086/518902. View

4.
Pisoni R . Characterization of a phosphate transport system in human fibroblast lysosomes. J Biol Chem. 1991; 266(2):979-85. View

5.
Ramirez-Montealegre D, Pearce D . Defective lysosomal arginine transport in juvenile Batten disease. Hum Mol Genet. 2005; 14(23):3759-73. DOI: 10.1093/hmg/ddi406. View