» Articles » PMID: 18408712

Insect Olfactory Receptors Are Heteromeric Ligand-gated Ion Channels

Overview
Journal Nature
Specialty Science
Date 2008 Apr 15
PMID 18408712
Citations 483
Authors
Affiliations
Soon will be listed here.
Abstract

In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.

Citing Articles

From macro to micro: De novo genomes of Aedes mosquitoes enable comparative genomics among close and distant relatives.

Morinaga G, Balcazar D, Badolo A, Iyaloo D, Tantely L, Mouillaud T bioRxiv. 2025; .

PMID: 39868221 PMC: 11760778. DOI: 10.1101/2025.01.13.632753.


An integrated anatomical, functional and evolutionary view of the olfactory system.

Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K bioRxiv. 2025; .

PMID: 39868125 PMC: 11760703. DOI: 10.1101/2025.01.16.632927.


Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management.

Mi T, Sheng C, Lee C, Nguyen P, Zhang Y Life (Basel). 2025; 15(1).

PMID: 39860050 PMC: 11766477. DOI: 10.3390/life15010110.


Expression of V-ATPases in Olfactory Sensillum Support Cells.

Jain K, Prelic S, Hansson B, Wicher D Insects. 2025; 15(12.

PMID: 39769617 PMC: 11676623. DOI: 10.3390/insects15121016.


Gene expansion in the hawkmoth drives evolution of food-associated odorant receptors.

Tom M, Brand P, Bucks S, Zhang J, Escobar Huezo M, Hansson B iScience. 2024; 27(12):111317.

PMID: 39640564 PMC: 11617253. DOI: 10.1016/j.isci.2024.111317.