» Articles » PMID: 18376946

Ab Initio Quantum Mechanical/molecular Mechanical Simulation of Electron Transfer Process: Fractional Electron Approach

Overview
Journal J Chem Phys
Specialties Biophysics
Chemistry
Date 2008 Apr 2
PMID 18376946
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.

Citing Articles

Direct Calculation of Electron Transfer Rates with the Binless Dynamic Histogram Analysis Method.

Koczor-Benda Z, Mateeva T, Rosta E J Phys Chem Lett. 2023; 14(44):9935-9942.

PMID: 37903301 PMC: 10641885. DOI: 10.1021/acs.jpclett.3c02624.


Ab Initio Machine Learning in Chemical Compound Space.

Huang B, Anatole von Lilienfeld O Chem Rev. 2021; 121(16):10001-10036.

PMID: 34387476 PMC: 8391942. DOI: 10.1021/acs.chemrev.0c01303.


On the convergence of multi-scale free energy simulations.

Konig G, Brooks B, Thiel W, York D Mol Simul. 2018; 44(13-14):1062-1081.

PMID: 30581251 PMC: 6298030. DOI: 10.1080/08927022.2018.1475741.


A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.

Konig G, Pickard F, Huang J, Thiel W, MacKerell A, Brooks B Molecules. 2018; 23(10).

PMID: 30347691 PMC: 6222909. DOI: 10.3390/molecules23102695.


Accurate Quantum Mechanical/Molecular Mechanical Calculations of Reduction Potentials in Azurin Variants.

Shen L, Zeng X, Hu H, Hu X, Yang W J Chem Theory Comput. 2018; 14(9):4948-4957.

PMID: 30040901 PMC: 6195766. DOI: 10.1021/acs.jctc.8b00403.


References
1.
Olsson M, Hong G, Warshel A . Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. J Am Chem Soc. 2003; 125(17):5025-39. DOI: 10.1021/ja0212157. View

2.
Blumberger J, Sprik M . Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: the Marcus perspective. J Phys Chem B. 2006; 109(14):6793-804. DOI: 10.1021/jp0455879. View

3.
Sit P, Cococcioni M, Marzari N . Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics. Phys Rev Lett. 2006; 97(2):028303. DOI: 10.1103/PhysRevLett.97.028303. View

4.
Tavernelli I, Vuilleumier R, Sprik M . Ab initio molecular dynamics for molecules with variable numbers of electrons. Phys Rev Lett. 2002; 88(21):213002. DOI: 10.1103/PhysRevLett.88.213002. View

5.
Tateyama Y, Blumberger J, Sprik M, Tavernelli I . Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes. J Chem Phys. 2005; 122(23):234505. DOI: 10.1063/1.1938192. View