Mondol S, Hasib M, Limon M, Rubayet Ul Alam A
Bioinform Biol Insights. 2023; 17:11779322231189371.
PMID: 37529484
PMC: 10387760.
DOI: 10.1177/11779322231189371.
Zabiegala A, Kim Y, Chang K
Anim Dis. 2023; 3(1):12.
PMID: 37128508
PMC: 10125864.
DOI: 10.1186/s44149-023-00075-x.
Hao Y, Wang Y, Wang M, Zhou L, Shi J, Cao J
Transbound Emerg Dis. 2022; 69(6):3181-3197.
PMID: 36218169
PMC: 9874793.
DOI: 10.1111/tbed.14732.
Sakamoto A, Osawa H, Hashimoto H, Mizuno T, Hasyim A, Abe Y
Emerg Microbes Infect. 2022; 11(1):2359-2370.
PMID: 36069348
PMC: 9527789.
DOI: 10.1080/22221751.2022.2122580.
Tyshkovskiy A, Panchin A
Bioessays. 2021; 43(12):e2100194.
PMID: 34697827
PMC: 8646886.
DOI: 10.1002/bies.202100194.
Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species.
Stout A, Millet J, Stanhope M, Whittaker G
One Health. 2021; 13:100282.
PMID: 34179330
PMC: 8216856.
DOI: 10.1016/j.onehlt.2021.100282.
Altered Local Interactions and Long-Range Communications in UK Variant (B.1.1.7) Spike Glycoprotein.
Borocci S, Cerchia C, Grottesi A, Sanna N, Prandi I, Abid N
Int J Mol Sci. 2021; 22(11).
PMID: 34067272
PMC: 8196891.
DOI: 10.3390/ijms22115464.
Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2.
Hatmal M, Alshaer W, Al-Hatamleh M, Hatmal M, Smadi O, Taha M
Cells. 2020; 9(12).
PMID: 33302501
PMC: 7763676.
DOI: 10.3390/cells9122638.
Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches.
Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G
Biochem Pharmacol. 2020; 182:114225.
PMID: 32956643
PMC: 7501082.
DOI: 10.1016/j.bcp.2020.114225.
Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases.
Sanachai K, Mahalapbutr P, Choowongkomon K, Poo-Arporn R, Wolschann P, Rungrotmongkol T
ACS Omega. 2020; 5(1):369-377.
PMID: 31956784
PMC: 6964278.
DOI: 10.1021/acsomega.9b02800.
Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens.
Luczo J, Tachedjian M, Harper J, Payne J, Butler J, Sapats S
Sci Rep. 2018; 8(1):11518.
PMID: 30068964
PMC: 6070550.
DOI: 10.1038/s41598-018-29944-z.
A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site.
Straus M, Whittaker G
PLoS One. 2017; 12(3):e0174827.
PMID: 28358853
PMC: 5373629.
DOI: 10.1371/journal.pone.0174827.
Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study.
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S
J Comput Aided Mol Des. 2016; 30(10):917-926.
PMID: 27714494
DOI: 10.1007/s10822-016-9981-5.
Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif.
Luczo J, Stambas J, Durr P, Michalski W, Bingham J
Rev Med Virol. 2015; 25(6):406-30.
PMID: 26467906
PMC: 5057330.
DOI: 10.1002/rmv.1846.
Molecular Dynamics Simulation Reveals the Selective Binding of Human Leukocyte Antigen Alleles Associated with Behçet's Disease.
Kongkaew S, Yotmanee P, Rungrotmongkol T, Kaiyawet N, Meeprasert A, Kaburaki T
PLoS One. 2015; 10(9):e0135575.
PMID: 26331842
PMC: 4557978.
DOI: 10.1371/journal.pone.0135575.
Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes.
Nutho B, Khuntawee W, Rungnim C, Pongsawasdi P, Wolschann P, Karpfen A
Beilstein J Org Chem. 2015; 10:2789-99.
PMID: 25550745
PMC: 4273227.
DOI: 10.3762/bjoc.10.296.
Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection.
Zeng H, Pappas C, Belser J, Houser K, Zhong W, Wadford D
J Virol. 2011; 86(2):667-78.
PMID: 22072765
PMC: 3255832.
DOI: 10.1128/JVI.06348-11.
H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens.
Soda K, Asakura S, Okamatsu M, Sakoda Y, Kida H
Virol J. 2011; 8:64.
PMID: 21310053
PMC: 3048564.
DOI: 10.1186/1743-422X-8-64.
Selective and potent furin inhibitors protect cells from anthrax without significant toxicity.
Remacle A, Gawlik K, Golubkov V, Cadwell G, Liddington R, Cieplak P
Int J Biochem Cell Biol. 2010; 42(6):987-95.
PMID: 20197107
PMC: 2862824.
DOI: 10.1016/j.biocel.2010.02.013.
Substrate cleavage analysis of furin and related proprotein convertases. A comparative study.
Remacle A, Shiryaev S, Oh E, Cieplak P, Srinivasan A, Wei G
J Biol Chem. 2008; 283(30):20897-906.
PMID: 18505722
PMC: 2475709.
DOI: 10.1074/jbc.M803762200.