» Articles » PMID: 18367671

A Mechanism for Cross-resistance to Nifurtimox and Benznidazole in Trypanosomes

Overview
Specialty Science
Date 2008 Mar 28
PMID 18367671
Citations 181
Authors
Affiliations
Soon will be listed here.
Abstract

Nifurtimox and benznidazole are the front-line drugs used to treat Chagas disease, the most important parasitic infection in the Americas. These agents function as prodrugs and must be activated within the parasite to have trypanocidal effects. Despite >40 years of research, the mechanism(s) of action and resistance have remained elusive. Here, we report that in trypanosomes, both drugs are activated by a NADH-dependent, mitochondrially localized, bacterial-like, type I nitroreductase (NTR), and that down-regulation of this explains how resistance may emerge. Loss of a single copy of this gene in Trypanosoma cruzi, either through in vitro drug selection or by targeted gene deletion, is sufficient to cause significant cross-resistance to a wide range of nitroheterocyclic drugs. In Trypanosoma brucei, loss of a single NTR allele confers similar cross-resistance without affecting growth rate or the ability to establish an infection. This potential for drug resistance by a simple mechanism has important implications, because nifurtimox is currently undergoing phase III clinical trials against African trypanosomiasis.

Citing Articles

Repurposing COVID-19 Compounds (via MMV COVID Box): Almitrine and Bortezomib Induce Programmed Cell Death in .

Bethencourt-Estrella C, Lopez-Arencibia A, Lorenzo-Morales J, Pinero J Pathogens. 2025; 14(2).

PMID: 40005505 PMC: 11858128. DOI: 10.3390/pathogens14020127.


Redefining the treatment of Chagas disease: a review of recent clinical and pharmacological data for a novel formulation of nifurtimox.

Altcheh J, Grossmann U, Stass H, Springsklee M, Garcia-Bournissen F PLoS Negl Trop Dis. 2025; 19(2):e0012849.

PMID: 39999088 PMC: 11856279. DOI: 10.1371/journal.pntd.0012849.


In silico evaluation of N-aryl-1,10-phenanthroline-2-amines as potential inhibitors of T. cruzi GP63 zinc-metalloprotease by docking and molecular dynamics simulations.

Camargo P, da Silva R, Zuma A, Garden S, Albuquerque M, Rodrigues C Sci Rep. 2025; 15(1):6036.

PMID: 39971997 PMC: 11839977. DOI: 10.1038/s41598-025-90088-y.


System-based insights into parasitological and clinical treatment failure in Chagas disease.

Ernst L, Macedo G, McCall L mSystems. 2025; 10(2):e0003824.

PMID: 39772644 PMC: 11834445. DOI: 10.1128/msystems.00038-24.


Achieving the Optimal AgO Concentrations to Modulate the Anti- Activity of Ag-ZnO/AgO Nanocomposites: In Vivo Investigations.

Rodrigues do Carmo Neto J, Braga Y, Franco P, de Oliveira J, Trevisan R, Mendes K Pharmaceutics. 2024; 16(11).

PMID: 39598539 PMC: 11597568. DOI: 10.3390/pharmaceutics16111415.


References
1.
Viode C, Bettache N, Cenas N, Krauth-Siegel R, Chauviere G, Bakalara N . Enzymatic reduction studies of nitroheterocycles. Biochem Pharmacol. 1999; 57(5):549-57. DOI: 10.1016/s0006-2952(98)00324-4. View

2.
McCalla D, Reuvers A, Kaiser C . Mode of action of nitrofurazone. J Bacteriol. 1970; 104(3):1126-34. PMC: 248269. DOI: 10.1128/jb.104.3.1126-1134.1970. View

3.
Nogoceke E, Gommel D, Kiess M, Kalisz H, Flohe L . A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem. 1997; 378(8):827-36. DOI: 10.1515/bchm.1997.378.8.827. View

4.
Docampo R . Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact. 1990; 73(1):1-27. DOI: 10.1016/0009-2797(90)90106-w. View

5.
Carnieri E, Moreno S, Docampo R . Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol. 1993; 61(1):79-86. DOI: 10.1016/0166-6851(93)90160-y. View