Li R, Yang X, Li J, Wang Y, Ma M
Nat Commun. 2024; 15(1):9197.
PMID: 39448581
PMC: 11502714.
DOI: 10.1038/s41467-024-53462-4.
Vijayan G, Koren E
Nano Lett. 2024; 24(29):8973-8978.
PMID: 38989861
PMC: 11273615.
DOI: 10.1021/acs.nanolett.4c01944.
Wang Y, Yang X, Liang H, Zhao J, Zhang J
Adv Sci (Weinh). 2024; 11(19):e2309701.
PMID: 38483889
PMC: 11109616.
DOI: 10.1002/advs.202309701.
Hormann L, Cartus J, Hofmann O
ACS Omega. 2023; 8(45):42457-42466.
PMID: 38024737
PMC: 10652266.
DOI: 10.1021/acsomega.3c05044.
Bessler R, Duerig U, Koren E
Nanoscale Adv. 2022; 1(5):1702-1706.
PMID: 36134207
PMC: 9417051.
DOI: 10.1039/c8na00350e.
Structural lubricity of physisorbed gold clusters on graphite and its breakdown: Role of boundary conditions and contact lines.
Gao H, Muser M
Front Chem. 2022; 10:935008.
PMID: 36118319
PMC: 9470919.
DOI: 10.3389/fchem.2022.935008.
Interlayer Registry Index of Layered Transition Metal Dichalcogenides.
Cao W, Hod O, Urbakh M
J Phys Chem Lett. 2022; 13(15):3353-3359.
PMID: 35394797
PMC: 9140326.
DOI: 10.1021/acs.jpclett.1c04202.
Recent highlights in nanoscale and mesoscale friction.
Vanossi A, Dietzel D, Schirmeisen A, Meyer E, Pawlak R, Glatzel T
Beilstein J Nanotechnol. 2018; 9:1995-2014.
PMID: 30116691
PMC: 6071713.
DOI: 10.3762/bjnano.9.190.
Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics.
Zhu P, Li R
Nanoscale Res Lett. 2018; 13(1):34.
PMID: 29396735
PMC: 5796957.
DOI: 10.1186/s11671-018-2451-3.
Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
Mandelli D, Leven I, Hod O, Urbakh M
Sci Rep. 2017; 7(1):10851.
PMID: 28883489
PMC: 5589749.
DOI: 10.1038/s41598-017-10522-8.
Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
Liu S, Wang H, Xu Q, Ma T, Yu G, Zhang C
Nat Commun. 2017; 8:14029.
PMID: 28195130
PMC: 5316838.
DOI: 10.1038/ncomms14029.
The evolving quality of frictional contact with graphene.
Li S, Li Q, Carpick R, Gumbsch P, Liu X, Ding X
Nature. 2016; 539(7630):541-545.
PMID: 27882973
DOI: 10.1038/nature20135.
Structural lubricity under ambient conditions.
Cihan E, Ipek S, Durgun E, Baykara M
Nat Commun. 2016; 7:12055.
PMID: 27350035
PMC: 4931278.
DOI: 10.1038/ncomms12055.
Macroscopic self-reorientation of interacting two-dimensional crystals.
Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A
Nat Commun. 2016; 7:10800.
PMID: 26960435
PMC: 4792927.
DOI: 10.1038/ncomms10800.
The breakdown of superlubricity by driving-induced commensurate dislocations.
Benassi A, Ma M, Urbakh M, Vanossi A
Sci Rep. 2015; 5:16134.
PMID: 26553308
PMC: 4639847.
DOI: 10.1038/srep16134.
Frictional transition from superlubric islands to pinned monolayers.
Pierno M, Bruschi L, Mistura G, Paolicelli G, di Bona A, Valeri S
Nat Nanotechnol. 2015; 10(8):714-8.
PMID: 26006001
DOI: 10.1038/nnano.2015.106.
The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
Liu Y, Grey F, Zheng Q
Sci Rep. 2014; 4:4875.
PMID: 24786521
PMC: 4007076.
DOI: 10.1038/srep04875.
A shear localization mechanism for lubricity of amorphous carbon materials.
Ma T, Wang L, Hu Y, Li X, Wang H
Sci Rep. 2014; 4:3662.
PMID: 24412998
PMC: 3888979.
DOI: 10.1038/srep03662.
Static and dynamic friction in sliding colloidal monolayers.
Vanossi A, Manini N, Tosatti E
Proc Natl Acad Sci U S A. 2012; 109(41):16429-33.
PMID: 23019582
PMC: 3478638.
DOI: 10.1073/pnas.1213930109.
Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces.
Bohlein T, Mikhael J, Bechinger C
Nat Mater. 2011; 11(2):126-30.
PMID: 22179397
DOI: 10.1038/nmat3204.