» Articles » PMID: 18319344

Analyses of Mlc-IIBGlc Interaction and a Plausible Molecular Mechanism of Mlc Inactivation by Membrane Sequestration

Overview
Specialty Science
Date 2008 Mar 6
PMID 18319344
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

In Escherichia coli, glucose-dependent transcriptional induction of genes encoding a variety of sugar-metabolizing enzymes and transport systems is mediated by the phosphorylation state-dependent interaction of membrane-bound enzyme IICB(Glc) (EIICB(Glc)) with the global repressor Mlc. Here we report the crystal structure of a tetrameric Mlc in a complex with four molecules of enzyme IIB(Glc) (EIIB), the cytoplasmic domain of EIICB(Glc). Each monomer of Mlc has one bound EIIB molecule, indicating the 1:1 stoichiometry. The detailed view of the interface, along with the high-resolution structure of EIIB containing a sulfate ion at the phosphorylation site, suggests that the phosphorylation-induced steric hindrance and disturbance of polar intermolecular interactions impede complex formation. Furthermore, we reveal that Mlc possesses a built-in flexibility for the structural adaptation to its target DNA and that interaction of Mlc with EIIB fused only to dimeric proteins resulted in the loss of its DNA binding ability, suggesting that flexibility of the Mlc structure is indispensable for its DNA binding.

Citing Articles

Structure and mechanism of a phosphotransferase system glucose transporter.

Roth P, Jeckelmann J, Fender I, Ucurum Z, Lemmin T, Fotiadis D Nat Commun. 2024; 15(1):7992.

PMID: 39266522 PMC: 11393339. DOI: 10.1038/s41467-024-52100-3.


Transition of Dephospho-DctD to the Transcriptionally Active State via Interaction with Dephospho-IIA.

Kang S, Lee K mBio. 2022; 13(2):e0383921.

PMID: 35311533 PMC: 9040800. DOI: 10.1128/mbio.03839-21.


Stochastic Analysis Demonstrates the Dual Role of Hfq in Chaperoning Sugar Shock Response.

Bianchi D, Brier T, Poddar A, Azam M, Vanderpool C, Ha T Front Mol Biosci. 2021; 7:593826.

PMID: 33425989 PMC: 7786190. DOI: 10.3389/fmolb.2020.593826.


SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation.

Jankauskaite J, Jimenez-Garcia B, Dapkunas J, Fernandez-Recio J, Moal I Bioinformatics. 2018; 35(3):462-469.

PMID: 30020414 PMC: 6361233. DOI: 10.1093/bioinformatics/bty635.


A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces.

Melo R, Fieldhouse R, Melo A, Correia J, Cordeiro M, Gumus Z Int J Mol Sci. 2016; 17(8).

PMID: 27472327 PMC: 5000613. DOI: 10.3390/ijms17081215.


References
1.
Lee S, Boos W, Bouche J, Plumbridge J . Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J. 2000; 19(20):5353-61. PMC: 313994. DOI: 10.1093/emboj/19.20.5353. View

2.
Kimata K, Inada T, Tagami H, Aiba H . A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol. 1998; 29(6):1509-19. DOI: 10.1046/j.1365-2958.1998.01035.x. View

3.
Xia B, Vlamis-Gardikas A, Holmgren A, Wright P, Dyson H . Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. J Mol Biol. 2001; 310(4):907-18. DOI: 10.1006/jmbi.2001.4721. View

4.
Tanaka Y, Itoh F, Kimata K, Aiba H . Membrane localization itself but not binding to IICB is directly responsible for the inactivation of the global repressor Mlc in Escherichia coli. Mol Microbiol. 2004; 53(3):941-51. DOI: 10.1111/j.1365-2958.2004.04179.x. View

5.
Lee C, Koo B, Cho S, Kim Y, Yoon M, Peterkofsky A . Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol. 2005; 58(1):334-44. DOI: 10.1111/j.1365-2958.2005.04834.x. View