Context:
Quantitative ultrasound (QUS) may be more helpful than dual-energy X-ray absorptiometry (DXA) in detecting bone deficits in patients with type 2 diabetes mellitus (T2DM).
Objective:
The objective of the study was to compare differences in bone mass measurement by DXA and QUS in T2DM and nondiabetic postmenopausal women.
Design, Setting, And Participants:
This clinical investigation was a cross-sectional study in 76 patients with T2DM and 86 nondiabetic postmenopausal women.
Main Outcome Measures:
The primary outcomes were speed of sound (SOS) at the radius, phalanx, and tibia measured by QUS and bone mineral density (BMD) at the lumbar spine (LS), femoral neck (FN), and total hip (TH) measured by DXA.
Results:
BMDs in T2DM patients were higher (LS, 1.06 +/- 0.12 vs. 0.90 +/- 0.23 g/cm(2); FN, 0.80 +/- 0.13 vs. 0.74 +/- 0.12 g/cm(2); TH, 0.87 +/- 0.14 vs. 0.80 +/- 0.13 g/cm(2), respectively, P < 0.001), whereas SOSs were lower than those in nondiabetics (radius, 4044 +/- 178 vs. 4129 +/- 182 m/sec; phalanx, 3902 +/- 207 vs. 3999 +/- 214 m/sec, respectively, P < 0.001). The positive relationships between SOS and BMD (r = 0.26-0.75, P < 0.05) in nondiabetics were not observed in women with T2DM. T2DM impacted negatively on SOSs (radius, beta= -0.223, P <0.01; phalanx, beta= -0.219, P <0.01) but positively on BMDs (LS, beta = 0.314, P < 0.001; FN, beta = 0.173, P < 0.05; TH, beta = 0.203, P <0.01).
Conclusions:
Differences in bone mass as measured by DXA and QUS in postmenopausal T2DM and nondiabetic women do not change in parallel. QUS can provide useful information in the skeletal assessment of patients with T2DM.
Citing Articles
Quantitative ultrasound imaging reveals distinct fracture-associated differences in tibial intracortical pore morphology and viscoelastic properties in aged individuals with and without diabetes mellitus - an exploratory study.
Dehnen C, Galindo A, Hoff P, Palme O, Maurer L, Raum K
Front Endocrinol (Lausanne). 2024; 15:1474546.
PMID: 39736865
PMC: 11683365.
DOI: 10.3389/fendo.2024.1474546.
Ultrasound-Based Techniques in Diabetic Bone Disease: State of the Art and Future Perspectives.
Gonnelli S, Al Refaie A, Baldassini L, De Vita M, Caffarelli C
Indian J Endocrinol Metab. 2024; 26(6):518-523.
PMID: 39005514
PMC: 11245286.
DOI: 10.4103/ijem.ijem_347_22.
Association between Pro-oxidant-Antioxidant balance and high-sensitivity C-reactive protein in type 2 diabetes mellitus: A Study on Postmenopausal Women.
Ehteram H, Raji S, Rahmati M, Teymoori H, Safarpour S, Poursharifi N
Endocrinol Diabetes Metab. 2022; 6(2):e400.
PMID: 36577716
PMC: 10000638.
DOI: 10.1002/edm2.400.
Major osteoporosis fracture prediction in type 2 diabetes: a derivation and comparison study.
Kong X, Zhao Z, Zhang D, Xie R, Sun L, Zhao H
Osteoporos Int. 2022; 33(9):1957-1967.
PMID: 35583602
DOI: 10.1007/s00198-022-06425-8.
Evaluation of Bone Marrow Texture and Trabecular Changes With Quantitative DCE-MRI and QCT in Alloxan-Induced Diabetic Rabbit Models.
Chen P, Zha Y, Wang L, Li L, Hu L, Xing D
Front Endocrinol (Lausanne). 2022; 12:785604.
PMID: 35002967
PMC: 8728072.
DOI: 10.3389/fendo.2021.785604.
Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes.
Caffarelli C, Tomai Pitinca M, Al Refaie A, Ceccarelli E, Gonnelli S
Aging Clin Exp Res. 2021; 34(1):121-127.
PMID: 34050917
PMC: 8795029.
DOI: 10.1007/s40520-021-01889-w.
Study to Weigh the Effect of Exercise Training on BONE quality and strength (SWEET BONE) in type 2 diabetes: study protocol for a randomised clinical trial.
Balducci S, Conti F, Sacchetti M, Russo C, Argento G, Haxhi J
BMJ Open. 2019; 9(11):e027429.
PMID: 31690602
PMC: 6858163.
DOI: 10.1136/bmjopen-2018-027429.
Diagnosis and management of bone fragility in diabetes: an emerging challenge.
Ferrari S, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R
Osteoporos Int. 2018; 29(12):2585-2596.
PMID: 30066131
PMC: 6267152.
DOI: 10.1007/s00198-018-4650-2.
The Prevalence of Osteopenia and Osteoporosis Among Malaysian Type 2 Diabetic Patients Using Quantitative Ultrasound Densitometer.
Abdulameer S, Sahib M, Syed Sulaiman S
Open Rheumatol J. 2018; 12:50-64.
PMID: 29755605
PMC: 5925862.
DOI: 10.2174/1874312901812010050.
Imaging of diabetic bone.
Ponti F, Guerri S, Sassi C, Battista G, Guglielmi G, Bazzocchi A
Endocrine. 2017; 58(3):426-441.
PMID: 28293856
DOI: 10.1007/s12020-017-1278-5.
Fracture Risk in Type 2 Diabetes: Current Perspectives and Gender Differences.
Russo G, Giandalia A, Romeo E, Nunziata M, Muscianisi M, Ruffo M
Int J Endocrinol. 2017; 2016:1615735.
PMID: 28044077
PMC: 5164892.
DOI: 10.1155/2016/1615735.
Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure.
Neglia C, Argentiero A, Chitano G, Agnello N, Ciccarese R, Vigilanza A
Int J Environ Res Public Health. 2016; 13(11).
PMID: 27809297
PMC: 5129277.
DOI: 10.3390/ijerph13111067.
The influence of the genetic and non-genetic factors on bone mineral density and osteoporotic fractures in Chinese women.
Deng Y, Zhao L, Zhang M, Pan C, Zhao S, Zhao H
Endocrine. 2012; 43(1):127-35.
PMID: 22798246
DOI: 10.1007/s12020-012-9726-8.
Bone health and type 2 diabetes mellitus: a systematic review.
Gorman E, Chudyk A, Madden K, Ashe M
Physiother Can. 2012; 63(1):8-20.
PMID: 22210975
PMC: 3024191.
DOI: 10.3138/ptc.2010-23bh.
Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss.
Zhang Y, Papasian C, Deng H
Osteoporos Int. 2010; 22(6):1781-8.
PMID: 20878391
PMC: 4537183.
DOI: 10.1007/s00198-010-1404-1.
Age-related bone mineral density, osteoporosis rate and risk of vertebral fracture in mainland Chinese women with type 2 diabetes mellitus.
Shan P, Wu X, Zhang H, Cao X, Yuan L, Liao E
J Endocrinol Invest. 2010; 34(3):190-6.
PMID: 20808073
DOI: 10.1007/BF03347065.