Furlong E, Reininger-Chatzigiannakis I, Zeng Y, Brown S, Sobti M, Stewart A
bioRxiv. 2024; .
PMID: 39149353
PMC: 11326301.
DOI: 10.1101/2024.08.08.607276.
Yokoyama K
Front Mol Biosci. 2023; 10:1176114.
PMID: 37168257
PMC: 10166205.
DOI: 10.3389/fmolb.2023.1176114.
Badocha M, Wieczor M, Marciniak A, Kleist C, Grubmuller H, Czub J
Proc Natl Acad Sci U S A. 2023; 120(8):e2215650120.
PMID: 36780529
PMC: 9974484.
DOI: 10.1073/pnas.2215650120.
Frasch W, Bukhari Z, Yanagisawa S
Front Microbiol. 2022; 13:965620.
PMID: 36081786
PMC: 9447477.
DOI: 10.3389/fmicb.2022.965620.
Hwang W, Karplus M
Proc Natl Acad Sci U S A. 2019; 116(40):19777-19785.
PMID: 31506355
PMC: 6778177.
DOI: 10.1073/pnas.1818589116.
Single-molecule pull-out manipulation of the shaft of the rotary motor F-ATPase.
Naito T, Masaike T, Nakane D, Sugawa M, Okada K, Nishizaka T
Sci Rep. 2019; 9(1):7451.
PMID: 31092848
PMC: 6520343.
DOI: 10.1038/s41598-019-43903-2.
Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites.
Mnatsakanyan N, Li Y, Weber J
J Biol Chem. 2018; 294(4):1152-1160.
PMID: 30510135
PMC: 6349107.
DOI: 10.1074/jbc.RA118.002504.
Elastic coupling power stroke mechanism of the F-ATPase molecular motor.
Martin J, Ishmukhametov R, Spetzler D, Hornung T, Frasch W
Proc Natl Acad Sci U S A. 2018; 115(22):5750-5755.
PMID: 29760063
PMC: 5984535.
DOI: 10.1073/pnas.1803147115.
Multiscale molecular dynamics simulations of rotary motor proteins.
Ekimoto T, Ikeguchi M
Biophys Rev. 2017; 10(2):605-615.
PMID: 29204882
PMC: 5899732.
DOI: 10.1007/s12551-017-0373-4.
Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F-ATPase Ring.
Dai L, Flechsig H, Yu J
Biophys J. 2017; 113(7):1440-1453.
PMID: 28978438
PMC: 5627347.
DOI: 10.1016/j.bpj.2017.08.015.
The FF ATP synthase: from atomistic three-dimensional structure to the rotary-chemical function.
Mukherjee S, Warshel A
Photosynth Res. 2017; 134(1):1-15.
PMID: 28674936
PMC: 5693661.
DOI: 10.1007/s11120-017-0411-x.
Catalytic robustness and torque generation of the F-ATPase.
Noji H, Ueno H, McMillan D
Biophys Rev. 2017; 9(2):103-118.
PMID: 28424741
PMC: 5380711.
DOI: 10.1007/s12551-017-0262-x.
Rotation Mechanism of Molecular Motor V-ATPase Studied by Multiscale Molecular Dynamics Simulation.
Isaka Y, Ekimoto T, Kokabu Y, Yamato I, Murata T, Ikeguchi M
Biophys J. 2017; 112(5):911-920.
PMID: 28297650
PMC: 5355535.
DOI: 10.1016/j.bpj.2017.01.029.
Expression of mammalian mitochondrial F-ATPase in depends on two chaperone factors, AF1 and AF2.
Suzuki T, Iida N, Suzuki J, Watanabe Y, Endo T, Hisabori T
FEBS Open Bio. 2017; 6(12):1267-1272.
PMID: 28203526
PMC: 5302055.
DOI: 10.1002/2211-5463.12143.
Importance of water entropy in rotation mechanism of F-ATPase.
Yoshidome T
Biophysics (Nagoya-shi). 2016; 7:113-122.
PMID: 27857599
PMC: 5036781.
DOI: 10.2142/biophysics.7.113.
Rotation of artificial rotor axles in rotary molecular motors.
Baba M, Iwamoto K, Iino R, Ueno H, Hara M, Nakanishi A
Proc Natl Acad Sci U S A. 2016; 113(40):11214-11219.
PMID: 27647891
PMC: 5056037.
DOI: 10.1073/pnas.1605640113.
Proposed model for the flagellar rotary motor with shear stress transmission.
Mitsui T, Ohshima H
Biophysics (Nagoya-shi). 2016; 8:151-62.
PMID: 27493532
PMC: 4629641.
DOI: 10.2142/biophysics.8.151.
F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft.
Kulish O, Wright A, Terentjev E
Sci Rep. 2016; 6:28180.
PMID: 27321713
PMC: 4913325.
DOI: 10.1038/srep28180.
Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry.
Vahidi S, Bi Y, Dunn S, Konermann L
Proc Natl Acad Sci U S A. 2016; 113(9):2412-7.
PMID: 26884184
PMC: 4780623.
DOI: 10.1073/pnas.1520464113.
Understanding structure, function, and mutations in the mitochondrial ATP synthase.
Xu T, Pagadala V, Mueller D
Microb Cell. 2015; 2(4):105-125.
PMID: 25938092
PMC: 4415626.
DOI: 10.15698/mic2015.04.197.