» Articles » PMID: 18259516

Wavelength-tuning Interferometry of Intraocular Distances

Overview
Journal Appl Opt
Date 2008 Feb 9
PMID 18259516
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

We describe basic principles of wavelength-tuning interferometry and demonstrate its application in ophthalmology. The advantage of this technique compared with conventional low-coherence interferometry ranging is the simultaneous measurement of the object structure without the need for a moving reference mirror. Shifting the wavelength of an external-cavity tunable laser diode causes intensity oscillations in the interference pattern of light beams remitted from the intraocular structure. A Fourier transform of the corresponding wave-number-dependent photodetector signal yields the distribution of the scattering potential along the light beam illuminating the eye. We use an external interferometer to linearize the wave-number axis. We obtain high resolution in a model eye by slow tuning over a wide wavelength range. With lower resolution we demonstrate the simultaneous measurement of anterior segment length, vitreous chamber depth, and axial eye length in human eyes in vivo with data-acquisition times in the millisecond range.

Citing Articles

Lens-free on-chip 3D microscopy based on wavelength-scanning Fourier ptychographic diffraction tomography.

Wu X, Zhou N, Chen Y, Sun J, Lu L, Chen Q Light Sci Appl. 2024; 13(1):237.

PMID: 39237522 PMC: 11377727. DOI: 10.1038/s41377-024-01568-1.


Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography.

Barroso A, Ketelhut S, Nettels-Hackert G, Heiduschka P, Amor R, Naranjo V Biomed Opt Express. 2023; 14(9):4421-4438.

PMID: 37791268 PMC: 10545187. DOI: 10.1364/BOE.494271.


Spectral Interferometry with Frequency Combs.

Twayana K, Rebolledo-Salgado I, Deriushkina E, Schroder J, Karlsson M, Torres-Company V Micromachines (Basel). 2022; 13(4).

PMID: 35457918 PMC: 9026469. DOI: 10.3390/mi13040614.


Generalized Image Reconstruction in Optical Coherence Tomography Using Redundant and Non-Uniformly-Spaced Samples.

Nagib K, Mezgebo B, Fernando N, Kordi B, Sherif S Sensors (Basel). 2021; 21(21).

PMID: 34770364 PMC: 8587445. DOI: 10.3390/s21217057.


Hollow-Core Photonic Crystal Fiber Gas Sensing.

Yu R, Chen Y, Shui L, Xiao L Sensors (Basel). 2020; 20(10).

PMID: 32466269 PMC: 7288133. DOI: 10.3390/s20102996.