Gao D, Yuan X
J Math Biol. 2024; 89(2):16.
PMID: 38890206
PMC: 11189357.
DOI: 10.1007/s00285-024-02109-5.
Guo S, He M, Cui J
Acta Math Appl Sin. 2023; 39(2):211-221.
PMID: 37082350
PMC: 9975851.
DOI: 10.1007/s10255-023-1042-y.
Khalaf S, Kadhim M, Khudair A
Partial Differ Equ Appl Math. 2022; 7:100470.
PMID: 36505269
PMC: 9721170.
DOI: 10.1016/j.padiff.2022.100470.
Nur Akkilic A, Sabir Z, Raja M, Bulut H
Eur Phys J Plus. 2022; 137(3):334.
PMID: 35310068
PMC: 8916505.
DOI: 10.1140/epjp/s13360-022-02525-w.
Cui X, Xue D, Li T
Nonlinear Dyn. 2022; 107(3):3155-3173.
PMID: 35095196
PMC: 8782717.
DOI: 10.1007/s11071-021-07114-7.
Identifying transmission patterns through parasite prevalence and entomological inoculation rate.
Amoah B, McCann R, Kabaghe A, Mburu M, Chipeta M, Moraga P
Elife. 2021; 10.
PMID: 34672946
PMC: 8530514.
DOI: 10.7554/eLife.65682.
Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors.
Hosack G, Ickowicz A, Hayes K
R Soc Open Sci. 2021; 8(3):201525.
PMID: 33959322
PMC: 8074930.
DOI: 10.1098/rsos.201525.
Towards a Semi-Automatic Early Warning System for Vector-Borne Diseases.
Pergantas P, Papanikolaou N, Malesios C, Tsatsaris A, Kondakis M, Perganta I
Int J Environ Res Public Health. 2021; 18(4).
PMID: 33668472
PMC: 7918487.
DOI: 10.3390/ijerph18041823.
Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic.
Higazy M
Chaos Solitons Fractals. 2020; 138:110007.
PMID: 32565624
PMC: 7293538.
DOI: 10.1016/j.chaos.2020.110007.
Disease control in a food chain model supplying alternative food.
Sahoo B, Poria S
Appl Math Model. 2020; 37(8):5653-5663.
PMID: 32287940
PMC: 7117010.
DOI: 10.1016/j.apm.2012.11.017.
Diseased prey predator model with general Holling type interactions.
Sahoo B, Poria S
Appl Math Comput. 2020; 226:83-100.
PMID: 32287497
PMC: 7112356.
DOI: 10.1016/j.amc.2013.10.013.
Computational model of a vector-mediated epidemic.
Dickman A, Dickman R
Am J Phys. 2020; 83(5):468-474.
PMID: 32255812
PMC: 7110924.
DOI: 10.1119/1.4917164.
Mathematical Analysis of the Ross-Macdonald Model with Quarantine.
Jin X, Jin S, Gao D
Bull Math Biol. 2020; 82(4):47.
PMID: 32242279
PMC: 7117789.
DOI: 10.1007/s11538-020-00723-0.
An almost periodic Ross-Macdonald model with structured vector population in a patchy environment.
Wang B, Qiang L, Wang Z
J Math Biol. 2019; 80(3):835-863.
PMID: 31655877
DOI: 10.1007/s00285-019-01443-3.
Medical and entomological malarial interventions, a comparison and synergy of two control measures using a Ross/Macdonald model variant and openmalaria simulation.
Elliott R, Smith D, Echodu D
Math Biosci. 2018; 300:187-200.
PMID: 29655551
PMC: 6013649.
DOI: 10.1016/j.mbs.2018.04.005.
A periodic disease transmission model with asymptomatic carriage and latency periods.
Al-Darabsah I, Yuan Y
J Math Biol. 2017; 77(2):343-376.
PMID: 29274002
DOI: 10.1007/s00285-017-1199-1.
Global properties of vector-host disease models with time delays.
Cai L, Li X, Fang B, Ruan S
J Math Biol. 2016; 74(6):1397-1423.
PMID: 27659303
DOI: 10.1007/s00285-016-1047-8.
On avian influenza epidemic models with time delay.
Liu S, Ruan S, Zhang X
Theory Biosci. 2015; 134(3-4):75-82.
PMID: 26328909
DOI: 10.1007/s12064-015-0212-8.
A PERIODIC ROSS-MACDONALD MODEL IN A PATCHY ENVIRONMENT.
Gao D, Lou Y, Ruan S
Discrete Continuous Dyn Syst Ser B. 2014; 19(10):3133-3145.
PMID: 25473381
PMC: 4244283.
DOI: 10.3934/dcdsb.2014.19.3133.
Optimal seasonal timing of oral azithromycin for malaria.
Gao D, Amza A, Nassirou B, Kadri B, Sippl-Swezey N, Liu F
Am J Trop Med Hyg. 2014; 91(5):936-942.
PMID: 25223942
PMC: 4228890.
DOI: 10.4269/ajtmh.13-0474.