» Articles » PMID: 18218341

Amyloid Beta, Mitochondrial Dysfunction and Synaptic Damage: Implications for Cognitive Decline in Aging and Alzheimer's Disease

Overview
Journal Trends Mol Med
Date 2008 Jan 26
PMID 18218341
Citations 443
Authors
Affiliations
Soon will be listed here.
Abstract

Recent studies of postmortem brains from Alzheimer's disease (AD) patients and transgenic mouse models of AD suggest that oxidative damage, induced by amyloid beta (Abeta), is associated with mitochondria early in AD progression. Abeta and amyloid-precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron-transport chain, increase reactive oxygen species production, cause mitochondrial damage and prevent neurons from functioning normally. Furthermore, accumulation of Abeta at synaptic terminals might contribute to synaptic damage and cognitive decline in patients with AD. Here, we describe recent studies regarding the roles of Abeta and mitochondrial function in AD progression and particularly in synaptic damage and cognitive decline.

Citing Articles

Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies.

Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y Biomedicines. 2025; 13(2).

PMID: 40002740 PMC: 11852430. DOI: 10.3390/biomedicines13020327.


Mitochondrial Dysfunction in Neurodegenerative Diseases.

Yang H Cells. 2025; 14(4).

PMID: 39996748 PMC: 11853439. DOI: 10.3390/cells14040276.


Investigating the Impact of Sorghum on Tau Protein Phosphorylation and Mitochondrial Dysfunction Modulation in Alzheimer's Disease: An In Vitro Study.

Rezaee N, Hone E, Sohrabi H, Abdulraheem R, Johnson S, Gunzburg S Nutrients. 2025; 17(3).

PMID: 39940374 PMC: 11820761. DOI: 10.3390/nu17030516.


Mitochondrial microRNAs: Key Drivers in Unraveling Neurodegenerative Diseases.

Yashooa R, Duranti E, Conconi D, Lavitrano M, Mustafa S, Villa C Int J Mol Sci. 2025; 26(2).

PMID: 39859339 PMC: 11766038. DOI: 10.3390/ijms26020626.


Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods.

Trinh D, Mai N, Pham T Brain Sci. 2025; 15(1).

PMID: 39851389 PMC: 11763454. DOI: 10.3390/brainsci15010021.


References
1.
Morris M, Beckett L, Scherr P, Hebert L, Bennett D, Field T . Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord. 1998; 12(3):121-6. DOI: 10.1097/00002093-199809000-00001. View

2.
Manczak M, Park B, Jung Y, Reddy P . Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 2004; 5(2):147-62. DOI: 10.1385/NMM:5:2:147. View

3.
Crouch P, Blake R, Duce J, Ciccotosto G, Li Q, Barnham K . Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci. 2005; 25(3):672-9. PMC: 6725334. DOI: 10.1523/JNEUROSCI.4276-04.2005. View

4.
Cleary J, Walsh D, Hofmeister J, Shankar G, Kuskowski M, Selkoe D . Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2004; 8(1):79-84. DOI: 10.1038/nn1372. View

5.
Oakley H, Cole S, Logan S, Maus E, Shao P, Craft J . Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006; 26(40):10129-40. PMC: 6674618. DOI: 10.1523/JNEUROSCI.1202-06.2006. View