» Articles » PMID: 18192360

Bacteriorhodopsin/amphipol Complexes: Structural and Functional Properties

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2008 Jan 15
PMID 18192360
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

The membrane protein bacteriorhodopsin (BR) can be kept soluble in its native state for months in the absence of detergent by amphipol (APol) A8-35, an amphiphilic polymer. After an actinic flash, A8-35-complexed BR undergoes a complete photocycle, with kinetics intermediate between that in detergent solution and that in its native membrane. BR/APol complexes form well defined, globular particles comprising a monomer of BR, a complete set of purple membrane lipids, and, in a peripheral distribution, approximately 2 g APol/g BR, arranged in a compact layer. In the absence of free APol, BR/APol particles can autoassociate into small or large ordered fibrils.

Citing Articles

Exploiting neutron scattering contrast variation in biological membrane studies.

Lakey J, Paracini N, Clifton L Biophys Rev (Melville). 2024; 3(2):021307.

PMID: 38505417 PMC: 10903484. DOI: 10.1063/5.0091372.


Protein Design: From the Aspect of Water Solubility and Stability.

Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S Chem Rev. 2022; 122(18):14085-14179.

PMID: 35921495 PMC: 9523718. DOI: 10.1021/acs.chemrev.1c00757.


Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation.

Ratkeviciute G, Cooper B, Knowles T Biochem Soc Trans. 2021; 49(4):1763-1777.

PMID: 34415288 PMC: 8421053. DOI: 10.1042/BST20210181.


Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches.

Jones A, Gabriel F, Tandale A, Nietlispach D Molecules. 2020; 25(20).

PMID: 33076366 PMC: 7587580. DOI: 10.3390/molecules25204729.


Cholesterol Interaction Directly Enhances Intrinsic Activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

Chin S, Ramjeesingh M, Hung M, Ereno-Oreba J, Cui H, Laselva O Cells. 2019; 8(8).

PMID: 31370288 PMC: 6721619. DOI: 10.3390/cells8080804.


References
1.
Zoonens M, Giusti F, Zito F, Popot J . Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry. 2007; 46(36):10392-404. DOI: 10.1021/bi7007596. View

2.
Martinez K, Gohon Y, Corringer P, Tribet C, Merola F, Changeux J . Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 2002; 528(1-3):251-6. DOI: 10.1016/s0014-5793(02)03306-9. View

3.
Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau E . Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta. 2002; 1565(2):144-67. DOI: 10.1016/s0005-2736(02)00566-7. View

4.
Renner C, Kessler B, Oesterhelt D . Lipid composition of integral purple membrane by 1H and 31P NMR. J Lipid Res. 2005; 46(8):1755-64. DOI: 10.1194/jlr.M500138-JLR200. View

5.
Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C . Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir. 2006; 22(3):1281-90. DOI: 10.1021/la052243g. View