» Articles » PMID: 18187335

The Distribution of Ion Acceptance in Atmospheric Pressure Ion Sources: Spatially Resolved APLI Measurements

Overview
Specialty Chemistry
Date 2008 Jan 12
PMID 18187335
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

It is demonstrated that spatially resolved mass selected analysis using atmospheric pressure laser ionization mass spectrometry (APLI MS) represents a new powerful tool for mechanistic studies of ion-molecule chemistry occurring within atmospheric pressure (AP) ion sources as well as for evaluation and optimization of ion source performance. A focused low-energy UV laser beam is positioned computer controlled orthogonally on a two-dimensional grid in the ion source enclosure. Resonance enhanced multiphoton ionization (REMPI) of selected analytes occurs only within the confined volume of the laser beam. Depending on the experimental conditions and the reactivity of the primary photo-generated ions, specific signal patterns become visible after data treatment, as visualized in, e.g., contour or pseudo-color plots. The resulting spatial dependence of sensitivity is defined in this context as the distribution of ion acceptance (DIA) of the source/analyzer combination. This approach provides a much more detailed analysis of the diverse processes occurring in AP ion sources compared with conventional bulk signal response measurements.

Citing Articles

Systematic Ion Source Parameter Assessment by Automated Determination of the Distribution of Ion Acceptance (DIA) Using APLI.

Wissdorf W, Lorenz M, Brockmann K, Benter T J Am Soc Mass Spectrom. 2019; 30(7):1262-1275.

PMID: 31069698 DOI: 10.1007/s13361-019-02190-x.


Increasing Polyaromatic Hydrocarbon (PAH) Molecular Coverage during Fossil Oil Analysis by Combining Gas Chromatography and Atmospheric-Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS).

Benigni P, DeBord J, Thompson C, Gardinali P, Fernandez-Lima F Energy Fuels. 2016; 30(1):196-203.

PMID: 27212790 PMC: 4869715. DOI: 10.1021/acs.energyfuels.5b02292.


Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

Vaikkinen A, Kauppila T, Kostiainen R J Am Soc Mass Spectrom. 2016; 27(8):1291-300.

PMID: 27126470 DOI: 10.1007/s13361-016-1399-8.


The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

Kauppila T, Kersten H, Benter T J Am Soc Mass Spectrom. 2014; 25(11):1870-81.

PMID: 25248413 DOI: 10.1007/s13361-014-0988-7.


Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

Pfeuffer K, Ray S, Hieftje G J Am Soc Mass Spectrom. 2014; 25(5):800-8.

PMID: 24658804 PMC: 4031277. DOI: 10.1007/s13361-014-0843-x.


References
1.
Bos S, Van Leeuwen S, Karst U . From fundamentals to applications: recent developments in atmospheric pressure photoionization mass spectrometry. Anal Bioanal Chem. 2006; 384(1):85-99. DOI: 10.1007/s00216-005-0046-1. View

2.
Robb , Covey , Bruins . Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem. 2000; 72(15):3653-9. DOI: 10.1021/ac0001636. View

3.
Schiewek R, Schellentrager M, Monnikes R, Lorenz M, Giese R, Brockmann K . Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. Anal Chem. 2007; 79(11):4135-40. DOI: 10.1021/ac0700631. View

4.
Syage J . Mechanism of [M + H]+ formation in photoionization mass spectrometry. J Am Soc Mass Spectrom. 2004; 15(11):1521-33. DOI: 10.1016/j.jasms.2004.07.006. View

5.
Raffaelli A, Saba A . Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev. 2003; 22(5):318-31. DOI: 10.1002/mas.10060. View